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Faced with the mathematical possibility of non-Euclidean geometries, 19th Century geometers were tasked
with the problem of determining which among the possible geometries corresponds to that of our space.
In this context, the contribution of the Belgian philosopher-mathematician, Joseph Delboeuf, has been unduly
neglected. The aim of this essay is to situate Delboeuf’s ideas within the context of the philosophies of geometry
of his contemporaries, such as Helmholtz, Russell and Poincaré. We elucidate the central thesis, according to

which Euclidean geometry is given special status on the basis of the relativity of magnitudes, we uncover its
hidden history and show that it is defensible within the context of the philosophies of geometry of the epoch.
Through this discussion, we also develop various ideas that have some relevance to present-day methods in
gravitational physics and cosmology.

Dieser Stoff kann also vorgestellt werden als ein physischer Raum;
dessen Punkte sich in dem geometrischen bewegen.

[Bernhard Riemann Gravitation und Lichts, 1853]

Introduction

Following the discovery of the mathematical possibility of non-
Euclidean geometries by Lobachevsky (1829a, 1829b), the “problem
of space”, that is, the problem of determining which among the avail-
able geometries should be chosen as that which represents the space
of our physical world, drew the attention of pre-relativistic physi-
cists, philosophers and mathematicians throughout the 19th Century.
The well known contributions of Helmholtz (1870, 1876), Riemann
(1854), Poincaré (1898) and Lie (1893) brought together an assem-
blage of empiricist and neo-Kantian ideas which would give birth to
new perspectives, such as geometrical conventionalism. On one hand,
neo-Kantian strands of thought suggested that the geometry of space
should be something regarded as distinct from the material contents
therein; on the other hand, empiricists argued that geometry is only
an abstraction from the observed behaviours of material bodies. By
considering space as a condition for the possibility of measurement rather
than a condition for the possibility of experience, Helmholtz developed
a form of empiricist neo-Kantianism, which had a profound and enduring
influence on later neo-Kantians and logical positivists (Friedman, 2001,
2009; Ryckman, 2003).
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There are, however, some problems with this standard 19th Cen-
tury approach to the problem of space: Helmholtz’s “conditions for
the possibility of measurement” rely on an approximately physically
instantiated notion of rigid bodies, which was undermined by later de-
velopments in special and general relativity. Whereas Poincaré’s lesser
emphasis on empiricism arguably avoids this issue, the Helmholtzian
views which he adopts appear to be inconsistent with certain other
aspects of his philosophy of space (see Section 3.3).

The aim of this paper is to introduce English-speaking audiences to
Joseph Delboeuf’s alternative approach to the space problem, which
has been overlooked by recent accounts such as Biagioli et al. (2016),
Dewar and FEisenthal (2020), Heinzmann (2001). Although Delboeuf’s
work engages deeply with the Kantian tradition, he is not even men-
tioned in recent neo-Kantian texts in the philosophy of physics such
as Biagioli et al. (2016), Bitbol, Kerszberg, and Petitot (2009), Friedman
(2001, 2014/1983), Ryckman (2005). The most significant acknowl-
edgement of Delboeuf’s contribution since the mid 20th Century is
by Torretti (2012/1978). But while Toretti recognises that Delboeuf
was “probably the earliest philosophical writer who had first-hand
acquaintance with the works of Lobachevsky” (p.153), and acknowl-
edges Delboeuf’s ideas as “interesting” (p.298), he ultimately gives
them a disfavourable verdict, and even revives a fallacious objection
to Delboeuf’s philosophy of geometry which had formerly been touted
by Russell and Poincaré (see Section 3.2).

Delboeuf defended the apriority of Euclidean space on the basis
of the relativity of magnitudes. Although he developed his ideas in-
dependently, the central argument dates back all the way to Wallis
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(1696) (see Section 2.2.1), and has recently been revived by Culina
(2018, 2020, 2023). Delboeuf is unique in that he gives this notion
of the relativity of magnitude the status of “first postulate”, thereby
attempting to erect geometry upon new foundations. Delboeuf rejected
the prior systems of geometry of Euclid, Lobachevsky, Mill and Kant
on the basis that none of these had rationally deduced the postulates
or axioms taken as primary. If geometry is the study of determinations
in space, Delboeuf claims that our concept of space is characterised
by the notion of “homogeneity” by which he means not only that the
properties of space are the same in all its parts, but also that these
are independent of its size (Delboeuf, 1860, p.126). In other words, in
geometry we must be able to consider the shape and size of figures
independently. For Delboeuf, this notion of homogeneity is not an
empirical fact about some “real space” (Delboeuf, 1893), rather, it is
the result of the process of abstraction which the intellect undertakes
in its effort to describe nature in terms of universal laws, i.e. to step
outside of the contingency of given (real) material objects.

While Delboeuf’s philosophy of science is a fascinating topic in
its own right, we will not dive too deeply into this topic here. Our
discussion will be mostly limited to situating this author’s ideas con-
cerning geometry within their historical context in the 19th Century
and drawing parallels with ideas of other philosophers and mathemati-
cians. Among the novel arguments and findings made in this essay: (1)
We uncover a convergence of thought between Delboeuf’s approach
and an essay by Leibniz titled Uniformis locus which has only been
made available relatively recently by De Risi (2005), De Risi (2007)
(see Section 2.3). (2) we elucidate the fundamental difference between
Helmholtz’s empirically realisable motions, and Delboeuf’s symmetry
conditions, and argue that only the latter are relevant to the Kantian
conception of space (see Section 3.1). (3) We refute Bertrand Russell’s
enduring ‘relative angles’ objection to Delboeuf’s notion of the relativ-
ity of magnitudes (see Section 3.2). (4) We propose that Poincaré’s
“principle of relative motion” and his more general conception of
the mathematical infinite can be grounded in Delboeuf’s philosophy
(see Section 3.3). We conclude in Section 4 with some suggestions
concerning the relevance of these findings to the methods of modern
physics. Since our findings here demonstrate the incompatibility of
the non-Euclidean geometries with the relativity of magnitude, this
work may be seen as complementary to the recent work of Eisenthal
(2024) which brings attention to the incompatibility of non-Euclidean
geometries of constant curvature with the relativity of velocity.

Given that Poincaré’s philosophy of space has some significant simi-
larities to Delboeuf’s, is better-known than Delboeuf’s, and represents in
some sense a lucid synthesis of many of the findings that were made by
investigators in the late 19th Century, we have chosen in Section 1 to
set the scene by discussing certain key aspects of Poincaré’s philosophy
of space that do not directly involve the question of geometry, but
which are nonetheless deeply relevant to later discussions.

1. Preliminary remarks on Poincaré on space

While Poincaré is quite famous today for his geometrical conven-
tionalism (which will be discussed in Section 2.1), other aspects of
his philosophy of space and mathematics are equally significant and
will help provide context for our subsequent discussion of geometry. In
this section, we will briefly cover some of these aspects: (1) Poincaré’s
revision of the Kantian notion of synthetic a priori reasoning, (2)
Poincaré’s empiricist account of the distinction between changes of
state and changes of place, (3) the distinction between empirical objects
and their mathematical idealisations.

1.1. Mathematical reasoning
By the late 19th Century, Kant’s claim that mathematics contains

synthetic a priori propositions was being subjected to severe criticism
by the logicists. Frege and Russell attempted to show that all true
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mathematical statements could be derived from a basic set of concepts
defined terminologically. Thus all mathematical truths would be re-
duced to logic, without need of intuitions.! Poincaré, on the other hand,
did not abandon the notion of synthetic a priori reasoning, but rather,
attempted to revise it.>

Poincaré develops his conception of synthetic a priori knowledge
in the first chapter of Science and Hypothesis, titled On the Nature of
Mathematical Reasoning. Kant had claimed that the basic propositions
of arithmetic, such as 5 + 7 = 12, are synthetic, since nowhere in the
concept of the sum of 5 and 7 is contained the concept of 12. Something
additional is needed for Kant, that is, an intuition of space in which
the two quantities can be placed side-by-side with one another, and the
operation of summation can be accomplished (Kant, 2004/1783, p.18).
Such a claim is controversial, in part because it depends greatly upon
how we define things. It is not too difficult to define our numbers in
such a way that basic propositions of arithmetic, such as 5+ 7 = 12 or
242 = 4 appear as analytic truths. Unlike Kant, Poincaré does not argue
that there is anything synthetic in these basic propositions; instead,
he claims that the so-called “demonstrations” of these sums are really
only analytic “verifications”. However, these trivial verifications are
not the true subject matter of mathematics, on the contrary, Poincaré
(2015/1913, p.33) insists:

It may even be said the very object of the exact sciences is to spare
us these direct verifications.

The essence of mathematics, for Poincaré, lies in the ability to
generalise across an infinity of cases, using what is called “reasoning
by recurrence”, or “mathematical induction”. The basic structure of a
proof by induction proceeds as follows:

1. The theorem is proven for n = 1.

. It is shown that if it is true for n = a, it must be true for n = a+1.

. Therefore we know that it is true for n = 2, and likewise n
3,4,5.... By induction, we have shown that it must be true for all
ne€ 7.

This enables one to make generalisations about some theorem over an
infinity of cases.® It is in this possibility of reasoning by recurrence—
which Poincaré calls “the mathematical reasoning par excellence”—that
he locates the true synthetic a priori judgment (Poincaré, 2015/1913,
p-39):

This rule, inaccessible to analytic demonstration and to experi-
ence, is the veritable type of the synthetic a priori judgment. [...]
Mathematical induction, that is, demonstration by recurrence, [...]
imposes itself necessarily because it is only the affirmation of a
property of the mind itself.

1.2. Empirical ground of space

In chapter IV of Science and Hypothesis, titled Space and Geometry,
Poincaré takes up the perspective of a naive investigator attempting
to make sense of the world present to his senses while lacking any
pre-conceived notions about how these ought to be organised and
interpreted. How do we come to the idea of space, and in particular,
how do we distinguish between changes of position and changes of
state (such as changes in colour)? Poincaré presents this problem as
follows (Poincaré, 2015/1913, p.70):

1 Note that for Frege, this meant that mathematics would be purely analytic,
whereas Russell viewed logic as synthetic.

2 See Folina (2016/1992) for an in depth discussion of Poincaré’s
neo-Kantianism.

3 In Section 3.3, we will argue that it is not the notion of infinity, but the
a priori concept of symmetry or mathematical equality that makes reasoning
by recurrence possible.
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Whether an object changes its state or merely its position, this is
always translated for us in the same manner: by a modification in
an aggregate of impressions. How then could we have been led to
distinguish between the two?

His solution is rather straight forward:

It is easy to account for. If there has only been a change of position,
we can restore the primitive aggregate of impressions by making
movements which replace us opposite the mobile object in the same
relative situation. We thus correct the modification that happened
and we reestablish the initial state by an inverse modification.

A change in spatial position is distinguished from a change in state
by the possibility of performing the reverse operation by means of
the correlative movement of our own bodies. In the case of sight, this
movement may also be performed by the “appropriate movement of
the eyeball.”

Now the possibility that certain “aggregates of impressions” may
be restored through our correlative movements depends upon the
existence of “solid bodies”, i.e. bodies which retain the relations among
their parts while changing position with respect to us. Indeed, it is
the observation of solid bodies, Poincaré argues, that has taught us to
distinguish between changes of state and changes of position, such that,
he concludes:

if there were no solid bodies in nature, there would be no geometry.
1.3. Mathematical idealisation

While this empiricist account of the origin of geometry is persua-
sive, it does not lead directly to the complete mathematical notion of
geometric space. While I may observe that as a body recedes from
me, I can restore its original size by approaching it once more, I can
never infer from experience that this will continue to be true if the
body recedes to an arbitrarily large distance. Should my concept of
space therefore be limited to distances for which the compensation is
practically realisable? Clearly, when we imagine objects in geometrical
space, we do not limit ourselves to distances which our bodies are
capable of traversing. Rather, we consider space as potentially infinite
in extent, and thereby we implicitly imagine an idealised observer
capable of visiting all parts of this space at will to perform the necessary
compensatory motions. The space of geometry differs in this respect
from the empirical condition that motivated its invention.

It is even more clear that an idealisation is involved when we place
our representations in space-time.* In space-time we imagine bodies,
extended in time as well as in space, and thereby we implicitly invoke
the possibility of an idealised observer that may travel to the different
parts of this space-time and measure it with ideal rulers and clocks.
But these motions are by no means physically realisable. It is not
even possible to visit distant points which seem to lie in our plane of
simultaneity, let alone to travel into the past. If geometry can, in any
sense, be said to have an empirical origin, it must have departed from
its empirical roots in order to encompass the notion of time.

A second issue concerning the difference between the empirical and
mathematical concepts of space is that no empirically given “natural
solid” is absolutely rigid. When we look at any given body close enough
we find motion and change in its structure, modifications due to heat,
the vibrations of the constituent particles, and so on. These contingen-
cies make it impossible for us to use empirical objects as standards for
the definition of a mathematical space. As Poincaré (2015/1913, p.79)
puts it:

4 The present comments concerning space-time are not drawn directly from
Poincaré’s works, however, they are inspired by his discussions of the issues.
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Geometry would be only the study of the movements of solids; but in
reality it is not occupied with natural solids, it has for object certain
ideal solids, absolutely rigid, which are only a simplified and very
remote image of natural solids.

To reach the mathematical concept of space, we must substitute
our empirical notions of solid bodies with their ideal counterparts; and
in so doing we substitute the empirically grounded, physical concept
of space — which we have no definite knowledge of — with the pure,
mathematical concept of space, of which we have absolute knowledge
a priori. Once we have performed this substitution of the empirical
objects with their ideal counterparts we make it possible to apply
the mathematical reasoning which Poincaré characterises as synthetic a
priori: While we may attempt to infer by physical induction that a rock
remains the same wherever it is placed in relation to the other bodies of
the universe, this knowledge will only ever be approximate, contingent
and subject to the possibility of being refuted by experience. However,
if my object is not a rock, but an ideal rigid body in Euclidean space, I
can say with absolute certainty that it will retain the relations amongst
its parts no matter where it is placed in this space.

2. The problem of space’s geometry

In the first part of this section, we briefly recount the well-known
history of Helmholtz and Riemann’s canonical 19th Century approach
to the problem of spatial geometry which was based on the notion of
the free mobility of bodies 2.1. In the latter parts (2.2 and 2.3), we
discuss the alternative approach of Delboeuf and some others which is
based on the idea of the relativity of magnitudes.

2.1. The axiom of free mobility

The repeated failures to prove the necessity of Euclid’s fifth pos-
tulate on the basis of the first four culminated in Lobachevsky’s con-
struction of a self-consistent geometry based on the denial of the
parallel postulate (Lobachevsky, 1829a). Just as theorems concerning
shapes in Euclidean geometry can be studied and proven, a correspond-
ing set of theorems pertaining the Lobachevsky’s hyperbolic geometry
can be proven mathematically. Which set of theorems is, then, true
of our space? This glaring ambiguity at the level of mathematics
prompted various thinkers, including Riemann and Helmholtz, to seek
an empirical ground for the validity of Euclidean geometry, or lack
thereof.

2.1.1. Riemann

Following from Gauss’ work on the geometry of curved surfaces,
Riemann developed the general concept of a “multiply extended mani-
fold” whose curvature may vary from point to point. Since the metrical
properties of this manifold should be grounded in empirical facts, this
manifold needed to be susceptible of measurement, which implied the
mobility of certain quantities in space (Riemann, 1854):

Measuring involves the superposition of the quantities to be com-
pared; it therefore requires a means of transporting one quantity to
be used as a standard for the others.

The first hypothesis that Riemann explores is that “the length of lines is
independent of their configuration, so that every line can be measured
by every other”. This allows for a broad class of possible geometries
that we now know as Riemannian geometries. Riemann also remarked
that if we assume — not only that lines are independent of configuration
— but also that the bodies are so, then:

it follows that the curvature is everywhere constant, and the angle
sum in all triangles is determined if it is known in one.
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2.1.2. Helmholtz

Helmholtz placed great emphasis on this latter idea, arguing that
the mobility of rigid bodies was a necessity for the possibility of
measurement, and concluded that only the spaces of constant curvature
could properly be considered as geometry (Helmholtz, 1866, 1870).
Helmholtz acknowledges, however, that the natural bodies apparent to
observation are never identical to our idealisations of these. In his latter
paper (Helmholtz, 1870), Helmholtz approaches something like a Kan-
tian view, according to which the notion of a geometric figure would
be “formed independently of actual experience”. However, Helmholtz
insists that:

we should have to maintain that the axioms of geometry are not
synthetic propositions, as Kant held them: they would merely define
what qualities and deportment a body must have to be recognised
as rigid.

Rather than being a condition for the possibility of representation,
like Kant thought, space and its geometry become conditions for the
possibility of measurement, as it were.® Helmholtz finishes his essay by
settling on a conventionalist stance according to which: if taken apart
from mechanical propositions, the axioms of geometry “constitute a
form into which any empirical content whatever will fit”. However, this
is not only true of Euclid’s axioms, but also of the axioms of spherical
and pseudospherical geometry (Helmholtz, 1870).°

2.1.3. Poincaré

Following Helmholtz, Poincaré further developed this conventional-
ist standpoint (Poincaré, 1898, 1905/1902). According to Poincaré any
empirical assertion of some given geometry over another is founded
on a “disguised definition”; It is a convention, and only an appeal
to some extra-empirical theory virtue such as “simplicity” may allow
us to decide between conventions. Poincaré’s preference for conven-
tionalism, rather than a purer form of Kantianism was grounded in
his group-theoretic approach to the problem. For Poincaré space is not
a form of the sensibility, since “sensations by themselves have no
spatial character”, rather the “sensible space” must be a form of our
understanding: “it is an instrument which serves us not to represent
things to ourselves, but to reason upon things” (Poincaré, 1898).

However, the geometry of this form cannot be determined a priori
for Poincaré, since there are a multiplicity of conceivable forms that we
may use to reason on things. These are the group structures, which are
the objects of study of mathematics. The various transformations on
a Euclidean space are only one among a multitude of possible group
structures that may be employed if experience warrants it. From this
point of view, nothing truly distinguishes Euclidean geometry from the
alternatives apart from its simplicity. The empirical observation that
it is at least approximately instantiated in the observable behaviours
of natural solids and rays of light does not even distinguish it from
geometries of very low curvature.

Despite claiming the conventionality of geometry, Poincaré devotes
very little attention in his work to geometries of changing curvature.
The bulk of Poincaré’s discussion of the conventionality of geometry
in part II on Space (chapters III, IV and V) of Science and Hypothesis
concerns the geometries of constant curvature. The reason for his
neglect of the former is given in the one passage in which they are
briefly discussed (Poincaré, 2015/1913, p.63):

most of these definitions are incompatible with the motion of a
rigid figure, [...] These geometries of Riemann, in many ways so
interesting, could never therefore be other than purely analytic and
would not lend themselves to demonstrations analogous to those of
Euclid.

5 This view is elaborated by Russell (1898).
6 The “pseudospherical” geometry is Helmholtz’s term for the hyperbolic
geometry of Lobachevsky and Bolyai.

168

Studies in History and Philosophy of Science 106 (2024) 165-176

Like Helmholtz, Poincaré rejects Riemann’s geometries of changing
curvature on the basis that they are incompatible with the motion of
rigid figures. However, for Poincaré the crucial point here is that this
incompatibility would undermine the very aim of mathematics. Since
the geometrical properties of figures in a space of changing curvature
would depend upon the value of the curvature from place to place,
it would become hopeless to make those inductive generalisations that
Poincaré views as so central to mathematical reasoning. Particular
propositions about these geometries would not be synthetic, but an-
alytic, since they would depend upon how the curvature is defined to
change from point to point.

2.2. The relativity of magnitudes I: before Delboeuf

Helmholtz and Poincaré’s refutations of Kant’s Euclidean a priori
rest essentially on a single claim: that the geometries of constant pos-
itive or negative curvature of Riemann and Lobachevsky respectively
may just as well serve as forms into which the empirical content of
our sensations may be placed. These geometries, they say, have just
the same right to be viewed as “transcendentally given” as that of
Euclid (Helmholtz, 1870).

But is there not some characteristic of Euclidean space, beyond its
mere “simplicity”, that sets it apart from those of constant non-zero
curvature? Indeed there is. It is that Euclidean space remains similar
to itself at different scales. In other words, we may zoom into some
part of this space without changing anything about it. Thinking in
terms of figures, rather than space itself, Euclidean space is the only
space which allows for the possibility of incongruent similar figures
(i.e. figures which differ in size but possess the same shape). All other
geometries necessarily fail this test since curvature is a scale-dependent
property of space. For instance, the sum of the angles of a triangle
placed in Lobachevsky’s hyperbolic space will shrink as the triangle is
enlarged with respect to this space; therefore, two equilateral triangles
of different sizes will not be similar.”

This criterion, by which Euclidean space can be uniquely deter-
mined, seems to have only been considered a handful of times in the
history of geometry. For us, it is easy to become conscious of it, since
we have knowledge of non-Euclidean geometry, and we can thereby
easily identify what characteristic distinguishes Euclidean geometry
by contrast. Prior to the development of the theory of non-Euclidean
geometries however, it would have been more difficult to deduce the
relationship between the absence of an absolute scale and the parallel
postulate.

2.2.1. Wallis (1663)

The relationship between the possibility of similarities and the
parallel postulate was first recognised by the English mathematician
John Wallis, Savilian Chair at Oxford, in 1663 (although his proof was
published in 1696 (Wallis, 1696)), over a century prior to the devel-
opment of the theory of non-Euclidean geometries. Wallis attempted to
show that Euclid’s fifth postulate can be deduced from ideas which are
self-evident. Though his proof is usually regarded as yet another failed
historical attempt to prove the parallel postulate, we will see that his
argument is quite significant and profound.®

Wallis’s proof is in two parts:°

7 Throughout this paper, we use the term “similar” in the geometrical
sense to denote figures of different sizes which have the same shape; we also
sometimes refer to shape-preserving scale-transformations as “transformations
by similarity” or simply “‘similarities”.

8 See for instance Jammer (2013, p.145) for a characterisation of Wallis’s
proof as a failed attempt to prove the parallel postulate.

9 The original text is written in Latin by Wallis. We will not go through
the details of Wallis’s demonstration here; the reader can consult this in Hill
(1925) for a reconstruction of the proof in English. See also Therrien (2020)
for a more detailed discussion of Wallis’s proof.
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1. Firstly, Wallis demonstrates that Euclid’s fifth postulate is iden-
tical to the possibility of constructing similar triangles, that is,
triangles which have the same shape though they differ in size.

. Secondly, Wallis provides a metaphysical argument for the pos-
sibility of transformations by similarity. This is due to the dis-
tinction between quality and quantity. Whereas, for Wallis, the
size of a figure is a quantity, the shape of a figure belongs to the
category of quality. Being different categories, each of these two
must be able to vary independently of the other.

2.2.2. Carnot and Laplace

The next mention of this relationship between the possibility of
similar figures and the parallel postulate appears in a note in Carnot’s
Géometrie de Position (Carnot, 1803, p.481):1°

The theory of parallels depends on a more primary notion which
appears to me to be of the same order of clarity as that of the perfect
equality or superposition of figures; this is the notion of similarity.
It seems to me that it can be regarded as a self-evident principle,
that which exists as large, such as a ball, a house, a drawing, can
be made in small, and vice-versa; by consequence, whatever figure
we may imagine, it is possible to imagine others of all sizes and
similar to the first, that-is-to-say of which all the dimensions have
amongst themselves the same proportions as that of the first. This
notion once admitted, it is easy to establish the theory of parallels,
without recourse to the notion of infinity.

Though Carnot asserts that the proof is easy, he does not derive it.
Moreover, he does not cite Wallis’s proof, so it is not clear whether
or not he learned of it from there.

This idea is also mentioned by Laplace in passing amid a discus-
sion of the scale-invariance of the inverse-square law of gravitational
attraction (Laplace, 1835, p. 471-472). Likewise in a footnote we
find:!"!

The perception of extension contains a special property, self-evident
and without which we cannot rigorously establish the properties
of parallels. The idea of a limited extension, for example of the
circle, contains nothing which depends on its absolute size. But, if
we diminish, by thought, its radius, we are inevitably inclined to
diminish in the same ratio its circumference and the sides of all the
figures inscribed. This proportionality appears to be a much more
natural postulate than that of Euclid; it is curious to find it again in
the results of universal gravity.

Once again, the work of Wallis is not mentioned.

10 Translation of: “La théorie des paralléles tient a une notion premiére
qui me paroit étre a-peu-pres du méme ordre de clarté que celle de I’égalité
parfaite ou de la superposition; c’est la notion de similitude. Il me semble qu’on
peut regarder comme un principe de premiere évidence, que ce qui existe en
grand, comme une boule, une maison, un dessin, peut étre fait en petit et
réciproquement; que part conséquent, quelque figure qu’on veille imaginer,
il est possible d’en imaginer d’autres de toutes grandeurs et semblables a la
premiére, c’est-a-dire dont toutes les dimensions aient entre elles les mémes
proportions que celles de la premiére. Cette notion une fois admise, il et
facile détablire la théorie des paralléles, sans recourir a la notion de I'infini”.
(Emphasis in original).

11 Translation of: “La perception de I’étendue renferme donc une propriété
spéciale, évidente par elle-meme et sans laquelle on no peut rigoureusement
établir les propriétés des paralleles. L’idée d’une étendue limitée, par exemple
du cercle, ne contient rien qui dépende de sa grandeur absolue. Mais, si nous
diminuons, par la pensée, son rayon, nous sommes portés invinciblement a
diminuer dans le meme rapport sa circonférence et les cotes de toutes les
figures inscrites. Cette proportionnalité me parait &tre un postulatum bien plus
naturel que celui d’Euclide; il est curieux de la retrouver dans les résultats de
la pesanteur universelle”.
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2.3. The relativity of magnitudes II: Delboeuf

Joseph Delboeuf was a Belgian psychologist, mathematician, and
philosopher. Although he spent the bulk of his career as an experimen-
tal psychologist, he obtained doctoral degrees in both philosophy and
mathematics and was deeply concerned with the foundations of geome-
try in his youth. While he was studying philosophy at the University of
Liege, his friend and colleague Francois Folie had attempted to prove
the necessity of Euclid’s parallel postulate. Folie’s professor had pointed
out the questionable proposition involved, and this disappointment led
Folie to abandon the endeavour (Delboeuf, 1895, p.346). Delboeuf, on
the other hand, did not abandon his youthful ambitions, and some years
later published a radical reconception of geometry that would place
Euclidean intuitions surely at its foundation (Delboeuf, 1860).!2

The difficulty with Euclid’s fifth postulate draws investigators into
a labyrinth from which they can only escape by a total revolution in
thinking about geometry. In this respect, two pathways are available;
we may either (1) seek new foundations for Euclidean geometry, or (2)
we should absorb Euclid’s geometry into a more general conception,
of which Euclid’s is only a special case. The second approach, that of
the “neo-geometers”, has been favoured by history. Delboeuf, on the
other hand, embarks upon the first project (Delboeuf, 1894b, p.122).
Lobachevsky’s discovery, for Delboeuf, did not disprove the necessity
of the parallel postulate in geometry; rather, it only served to help us
better understand what our Euclidean intuitions are founded on.

2.3.1. The homogeneity of space

In his Prolégoménes Philosophiques De La Geometrie Et Solution Des
Postulats (henceforth Prolégomenes) of 1860, Delboeuf independently
rediscovers the insight of Wallis, Carnot and Laplace that the “mu-
tual independence of shape and size” implies the Euclidean nature of
space (Delboeuf, 1860). He elevates this insight to the “first postulate”
of geometry and argues, much like Wallis, that it is in philosophy and
metaphysics, not geometry, that we must seek its justification. This
justification is found, for Delboeuf, to be implicit in the concept we
have of space, namely, that it is “homogeneous”. Homogeneity, for
Delboeuf, is a more restrictive criterion than what this word usually
means today. Today, we generally recognise a manifold M as homo-
geneous if all points stand in the same relation to the whole. This can
be specified mathematically in terms of the isometry of the metric g
under the group action of the translation group 7. Delboeuf calls this
property “isogeneity” rather than homogeneity, and recognises that it
holds for instance of the circumference of a circle, the surface of a
sphere, as well as non-Euclidean geometries of constant curvature such
as the hyperbolic geometry of Lobachevsky and the spherical geometry
of Riemann. The word “homogeneity”, for Delboeuf, is reserved for
an extension which is self-similar, that is to say, invariant under scale
transformations; in present day language we would call this rescaling
conformal isometry: the group action ¢ transforms the metric g such
that ¢*g = Q%g, where Q is constant across space. It can be shown
that a geometry (M, g), which is isometric under translations as well as
rescalings must be Euclidean (Wald, 2010).

For Delboeuf, the assertion of the homogeneity of space is not some
habit of thought taught by the regularities of our experience, as an
empiricist such as Mill might see it, on the contrary, Delboeuf sees the
space and time of our experience as heterogeneous (Delboeuf, 1860,
p.41)1:

Any being does not remain the same when we transport it from here
to there; today it is different from what it was yesterday and from
what it will be tomorrow.

12 Francois Folie would go on to become a distinguished astronomer and
director of the Royal Observatory of Belgium in Uccle.

13 Translation of: “Un étre quelconque, ne reste pas le méme quand d’ici on
le transporte 14 ; aujourd’hui il est différent de ce qu’il était hier et de ce qu’il
sera demain”.
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Instead, the notion of space’s homogeneity follows from the method of
science, it is the consequence of the effort of our intelligence to uncover
the unity underlying the multiplicity given in phenomena'“:

It is from this vast whole that intelligence must seek the laws; it is
this infinite variety of facts that she must reduce to a few general
facts. For this, she resorts to a first abstraction; she supposes time
and space to be perfectly homogeneous, that is to say, as we will
explain later, indefinitely and arbitrarily divisible into parts which
differ only by their magnitude.

Through this process of abstraction, of “ideal homogeneification”
of space and time, we make the world appear as “inert” and “in-
finitely divisible” (p.42). But it is only insofar as we carry out this
abstraction that we are able to subject this world to universal laws.
In bk. I, ch. 2 of Prolégoménes, Delboeuf describes how the object of
science changes across multiple consecutive processes of abstraction.
Zoology and botany study organisms insofar as they are instances of
their species, the physical and chemical sciences consider bodies as
inert, they are no longer unique individuals but assemblages of some
basic substances such as elements which are each universal. Through
a further abstraction we reach the mathematical sciences: mechanics
considers bodies in terms of the actions they exert on one-another,
which we call force. Now if we abstract further, away from the changes
and motions which result from the inequality of forces, Delboeuf writes
(p.67)*:

the universe is reduced to an ensemble of figures. The science of
these figures is called geometry.

All figures are endowed with a shape and a size. Indeed geometry can
be studied from either perspective. Delboeuf gives the name “synthetic
geometry” to the study of the figure “in-itself”, that is, if we “bring back
questions of size to questions of shape”. Conversely, he calls “analytic
geometry” the study of shapes in terms of relations of magnitudes, for
instance “the shape of a figure is given in terms of the length of the
coordinates of each of its points” (p.69). The postulate of the mutual
independence of shape and size is thus inherent to synthetic geometry,
since it is assumed in the notion that one can study shape in itself. As
well as the homogeneity of space, Delboeuf identifies this first postulate
with the recognition of the relativity of magnitude (p.129)'6:

To say that space is homogeneous is at bottom nothing but the
assertion that there is no absolute magnitude.

2.3.2. Leibniz and the definition of the straight

Interestingly, the concepts of homogeneity and isogeneity had pre-
viously been discussed by Leibniz under the names of “self-similarity”
and “self-congruence” respectively. In an unpublished essay titled
“Uniformis locus” which has so far been discussed solely in the work of
Vincenzo de Rizi (De Risi, 2005; De Risi, 2007, 2015), Leibniz includes
the definitions of the plane, the straight and space in terms of their
self-similarity’”:

14 Translation of: “Clest ce vaste ensemble dont l'intelligence doit chercher
les lois c’est cette infinie variété de faits qu’elle doit ramener a quelques
faits généraux. Pour cela, elle a recours & une premiére abstraction; elle
suppose le temps et I’espace parfaitement homogeénes, c’est-a-dire, comme nous
I’expliquerons plus tard, indéfiniment et arbitrairement divisibles en parties qui
ne différent que par leur grandeur”.

15 Translation of : “I'univers se réduit & un ensemble de figures. La science
des figures est la géométrie”.

16 Translation of: “Dire que I'espace est homogene, revient, au fond, a dire
que rien n’a une grandeur absolue”.

17 The term “locus”, which Leibniz uses, corresponds to the term “quantum”
in Delboeuf’s writings. We have also used the term “extension” in this text to
denote the same concept.
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A locus can be called uniform or self-congruent if its congruently
bounded parts are congruent. On the other hand, a locus is self-
similar if its similarly bounded parts are similar. The only self-
similar loci are the straight line, the plane, and space itself. Uniform
loci include all self-similar loci and, besides, others—that is to say,
among the lines, the arc of a circle and the cylindrical helix and,
among the surfaces, the spherical and the cylindrical ones.

Indeed Leibniz even recognises the same concept of “homogeneity”
as Delboeuf, though he does not use the term “isogeneity”, preferring
to use “equality” instead:

As I have discussed similarity and congruence, I have also distin-
guished between homogeneity and equality. In fact, the loci that
can be transformed into similar ones are homogeneous; while the
loci that can be transformed into congruent ones are equal.

The resemblance to Delboeuf’s writings here is quite striking.'®
In fact, Delboeuf himself placed great emphasis on defining not only
space, but the straight line and the plane in terms of their homogeneity
or self-similarity (Delboeuf, 1860, p.180)*:

The plane is a homogeneous surface; the straight is a homogeneous line;
that is to say that a portion of a plane, magnified, generates the
same plane; that a portion of a straight, magnified, reproduces the
straight. We can therefore regard homogeneity as being the genetic
characteristic of space, of the plane, and of the straight line.

As Delboeuf notes, historically there have been a multitude of appar-
ently different definitions of the straight: viewed from the standpoint
of distance, it is the shortest path between two points; from that of
direction, it is a line of constant direction, and so on (p.175). Given
one of these definitions, the others would appear as synthetic truths,
but none can be used to deduce the others analytically. However, these
synthetic theorems, Delboeuf argues, are each in fact analytic decom-
positions of the original intuition that gave rise to them all (p.177). If
we wish to escape the paradoxes, to overcome the impossible task of
deriving one definition from another, we must seek to characterise the
fundamental essence of the straight or of the plane. This leads Delboeuf
to define them in terms of their homogeneity; like Euclidean space,
the straight and the plane are distinguished by their invariance under
dilations. Although the original intuition which underlies our notion of
the straight is not itself conceptual, it can be captured by a concept —
that of homogeneity — from which the theory can be developed.

Given this definition, the notion of straight lines in non-Euclidean
geometries automatically becomes absurd; the geodesics of a curved
space will not be invariant under dilations since the space itself is
not invariant under these transformations: a great circle on a sphere
surface will be pushed outside of the sphere it inhabits if it is dilated
with respect to that surface. The notion of geodesics which is proper to
Riemannian geometry assumes one of the secondary definitions of the

18 There is no evidence that Delboeuf was aware of the above mentioned
essay by Leibniz, since it had not been published at the time. In fact, Delboeuf
recounts that he was only alerted to the similarity between his work and some
of Leibniz’s other writings (which had just been made available two years
prior in Leibniz (1858)) by his mentor Ueberweg shortly after the publication
of Dlboeuf’s book (Delboeuf, 1895, p.346). While it is plausible that Delboeuf
may have been influenced indirectly by Leibniz through his conversations with
Ueberweg, the similarity between Leibniz and Delboeuf should be understood
first and foremost as an instance of convergence of thought, suggesting an
affinity between these two thinkers.

19 Translation of: “Le plan est une surface homogéne; La droite est une ligne
homogene ; c’est-a-dire qu’une portion de plan, majorée, engendre le méme
plan; qu’une portion de droite, majorée, reproduit la droite. Nous pouvons donc
regarder ’homogénéité comme étant le caractére génétique de ’espace, du plan,
de la droite”.
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straight: that it is the shortest path between two points, but if we follow
Delboeuf and take the essence of the straight to be its homogeneity,
we would no longer recognise the geodesics of non-euclidean spaces
as straight lines, and the controversy concerning Euclid’s postulate of
parallels would be resolved. As De Risi (2015, p.61) puts it in his
commentary on Leibniz’s definition®’:

one could say that the truth of the Parallel Postulate is the condition
for such a definition or rather that this last notion of a straight line,
taken as a real definition, already implies the truth of the Parallel
Postulate.

2.3.3. Neo-Kantianism?

While there are many aspects of Delboeuf’s philosophy of geometry
and science in general that could reasonably be characterised as neo-
Kantian, Delboeuf explicitly made an effort to distinguish himself from
Kant. The central argument of Delboeuf’s book is framed in terms of
a dialectic between Kant’s apriorism and Mill’s empiricism, which he
seeks to reconcile by recognising the process of abstraction as the source
of the apodicticity of the laws of nature (Delboeuf, 1860, p.50)*':

It is therefore on an abstraction of our mind that the apodicticity
of the laws of nature rests; and the famous axiom on the constancy
and invariability of these same laws is itself only a consequence. [...]
This solution reconciles empiricism and idealism, Mill and Kant.

Delboeuf’s main objection to Kant’s account of geometry is that it
only “push[ed] back the difficulty instead of resolving it” since it makes
the laws of geometry “the laws of our nature [...] without telling us
why it is that precisely the ideas of geometry are innate to us” (p.8).
As we have seen, Delboeuf seeks to answer this “why” by identifying
homogeneity as the key concept that characterises this intuition, and
from which the postulates of geometry would follow.

Like Kant, Delboeuf recognises the invariability and uniformity we
discover in nature as the imprint of our own reasoning (Delboeuf, 1860,
p.-51)*:

We are also getting closer to Kant; when we discover nature’s
agreement with the laws of our mind, we recover what we have
placed in her: we have given her order and invariability; we discover
order and invariability; we see what we are capable of seeing;
we see nature as we are capable of seeing her. Abstraction is an
operation of our mind, and nature has become abstract for us; it
shows us straight lines, perfect circles; We discover simple and
pure bodies, distilled water, potassium nitrate, carbonate of lime,
whereas it provides us with mixtures, water from the sea and rivers,
saltpeter, chalk and marble.

20 For more information concerning Leibniz’s development of this notion of
the self-similarity or homogeneity in geometry, see De Risi (2015).

21 Translation of: “C’est donc sur une abstraction de notre esprit que repose
l'apodicticité des lois de la nature ; et le fameux axiome sur la constance et
I’invariabilité de ces mémes lois, n’en est lui-méme qu’une conséquence. [...]
Cette solution concilie a la fois I’empirisme et I'idéalisme, Mill et Kant”.

22 Translation of: “Nous nous rapprochons aussi de Kant. En effet, quand
nous constatons dans la nature l’accord avec les lois de notre esprit, nous y
retrouvons ce que nous y avons mis nous y avons mis ’ordre et I'invariabilité ;
nous y retrouvons l’ordre et I'invariabilité ; nous y voyons ce que nous pouvons
y voir ; nous la voyons comme nous pouvons la voir. L’abstraction est une
opération de notre esprit, et la nature est pour nous devenue abstraite elle nous
montre des lignes droites, des cercles parfaits ; nous y découvrons des corps
simples, des corps purs,de ’eau distillée,du nitrate de potasse, du carbonate de
chaux, tandis qu’elle nous fournit des mélanges, ’eau de la mer et des fleuves,
du salpétre, de la craie et du marbre”.
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Concerning space, we have already seen that Delboeuf makes an
effort to distinguish “real” or empirical space from “geometrical” space.
In fact, in 1893, returning to the topic of geometry after a three
decade hiatus, Delboeuf devotes an entire essay to emphasising this
very distinction (Delboeuf, 1893). Concerning “real” space, Torretti
(2012/1978) has brought attention to the following intriguing passage
in which Delboeuf argues that the non-Euclidean geometries of constant
curvature would in no ways help us to represent real space better than
the Euclidean (Delboeuf, 1894a, p.372)*:

We can therefore say of Riemann and Lobachevsky’s spaces that
they are artificial spaces, like Euclidean space; and in this respect
they are just as geometrical as Euclidean space. But they have no
special quality to represent real space better than the latter. This
[real space] certainly has a curvature, but this curvature is different
at each of its points and varies there at each instant. The real figures,
that is to say, the bodies, change with time and place. The constant
curvatures of meta-Euclidian spaces are therefore as far from reality
as is the homogeneity of Euclidean space.

From the present-day perspective, we are compelled to respond: why
not then ditch Euclidean space, and the “meta-Euclidean” spaces of constant
curvature? Why not embrace the varying curvature of real space and apply
Riemann’s broader notion of differentiable manifolds? Delboeuf seems on
the point of anticipating the revolutions of the subsequent decades,
but instead he passes by this and retreats to his aprioristic defence
of Euclidean geometry. Torretti (2012/1978, p.300) takes this as ev-
idence that Delboeuf had not read Riemann. However, it is more likely
that Delboeuf avoided considering Riemann’s geometries of changing
curvature for the very same reason that most commentators did at the
time; that, as Poincaré put it, these geometries are purely analytic, they
do not permit the kinds of mathematical generalisations that are the
essence of all a priori synthetic reasoning.

Moreover, it is worth remarking that Riemann’s own writings are
not in contradiction with Delboeuf’s position as Torretti seems to
believe. Amid some of Riemann’s most suggestive remarks, in which
he proposes (in 1853) that the force of gravity be described along
with inertia in terms of the dynamical geometry of a physical space,
anticipating Einstein’s equivalence hypothesis (Riemann, 1876), we
find a similar distinction between a physical (or real) and a geometrical
space that Delboeuf makes:**

I seek the cause [of gravity] in the state of motion of the continuous
substance spread throughout the entire infinite space. [...] this
substance may be thought of as a physical space whose points move
in geometrical space.

2 Translation of: “On peut donc dire des espaces de Riemann et Lo-
batschewsky, que ce sont des espaces artificiels, comme l’espace euclidien; et
sous ce rapport, ils sont tout aussi géométriques que I’espace euclidien. Mais ils
n’ont pas qualité spéciale pour représenter mieux que lui ’espace réel. Celui-
ci, comme je l'ai dit dans ma premiére étude, a certainement une courbure,
mais cette courbure est différente en chacun de ses points et y varie a chaque
instant. Les figures réelles, c’est-a-dire les corps, y changent avec le temps et
avec le lieu. Les courbures constantes des espaces méteuclidiens sont donc
aussi éloignées de la réalité que I’est 'homogénéité de I’espace euclidien”.

24 The contracted passage given above is from Peter Pesic’s English transla-
tion (Riemann, 2007/1853). The full passage in German reads as follows: “Die
nach Grosse und Richtung bestimmte Ursache (beschleunigende Schwerkraft);
welche nach 3. in jedem Punkte des Raumes stattfindet, suche ich in der
Bewegungsform eines durch den ganzen unendlichen Raum stetig verbreiteten
Stoffes, und zwar nehme ich an, dass die Richtung der Bewegung der Richtung
der aus ihr zu erldarenden Kraft gleieh, und ihre Geschwindigkeit der Grosse
der Kraft proportional sei. Dieser Stoff kann also vorgestellt werden als ein
physischer Raum; dessen Punkte sich in dem geometrischen bewegen”.
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This passage suggests that Riemann may have endorsed the recognition
of two distinct notions of space; on one hand a real space as a kind
of substance, a physical field, and on the other hand a geometrical,
conceived space with respect to which we define and measure the
motion or curvature of the physical space.

Although Kant himself had not considered the possibility of non-
Euclidean spaces, it is worth noting that Kant does make a similar
distinction between “empirical” and “absolute” space according to
which the latter, which exists “for the sake of the possibility of expe-
rience”, is considered as “in itself nothing, and no object at all” (Kant,
1970/1786, p.16). We may here draw an analogy: whereas the motion
of an empirical, relative space, for Kant, “presupposes in turn an
enlarged space” in which it is moved, we could say that the curvature
or inhomogeneity of some empirical space presupposes a homogeneous
space with respect to which this curvature would be defined. In this
way we would arrive by abstraction at Delboeuf’s notion of a homo-
geneous space, lacking curvature, not as a physical thing, but as a
reflection of a fundamental feature of the scientific method.

Overall, it seems fair to characterise Delboeuf’s philosophy of ge-
ometry as broadly neo-Kantian; moreover, unlike the well established
neo-Kantianism of today (Bitbol et al., 2009; Friedman, 2001) which
was to some extent inaugurated by Helmholtz, Delboeuf’s approach
offers a path forwards which avoids parting ways with Euclidean
apriorism.

3. Reflections and discussions
3.1. Mobility or Leibniz shifts?

Readers may have noticed the contrast between Delboeuf’s ar-
guments for scale-invariance and Helmholtz’s requirements for the
possibility of congruence. Helmholts’s notion of congruence is em-
pirically grounded, it depends upon the physically realisable motions
of natural solids. Dilations of natural solids, on the other hand, are
not physically realisable. On what grounds, then, do we assert the
possibility of similarities?

In the physically realised motion of a natural solid, the given body
is known to have been moved because it has changed its relation to
other bodies. Has it moved in geometrical space? That is entirely a matter
of convention since this space is a creation of our minds. The only
space in which we know it to be moved is the relative space defined,
and perhaps conditioned, by the surrounding bodies. By verifying the
empirical possibility of congruence, we have only shown that this
physical space — the relative space conditioned by surrounding bodies
- is approximately isogenous. We have shown nothing of geometrical
space.

The translations that are analogous to the dilations imagined by
Wallis, Laplace, Delboeuf, and others, are not translations of single
bodies with respect to others, they are Leibniz shifts: motions of all
bodies in the universe with respect to geometrical space itself. These
motions lack any physical meaning, and take place only in our minds.
We are not concerned with motions of some bodies with respect to
others, since such motions could only tell us of the properties of bodies.
We want to know about the properties of space itself, and, since we
conceive this space as passive, we may assert that the relations among
bodies should be invariant under Leibniz shifts. This condition tells
us with certainty that the curvature of geometrical space is constant.
Further, we also assert the invariance of the relations among bodies
under universal dilations, which tells us that geometrical space must be
Euclidean.

The impossibility of dilating natural solids with respect to one
another informs us that the real, physical space they mutually inhabit
possesses a definite scale, but tells us nothing about the properties of
an ideal space. The converse is also true: the possibility of dilating
all bodies with respect to an imagined space ensures that it must be
Euclidean, but says nothing of the physical properties bodies possess

172

Studies in History and Philosophy of Science 106 (2024) 165-176

with respect to one another. One class of motions is proper to the one,
the other to the other, but the two are not interchangeable. As we have
seen above, in the Metaphysical Foundations of Natural Science, Kant
explicitly distinguishes between absolute space, which is an ideal form,
and empirical or relative space which are those spaces in which we
perceive objects to be moved (Kant, 1970/1786, p. 16-17). Therefore
Helmholtz’s claim that the possibility of congruence of natural solids
implies anything about Kant’s forms of intuition, is simply mistaken.

If we admit that Helmholtz’s empiricist method can only tell us of
the geometry of a real or physical space, then history has vindicated
Delboeuf’s objection to this. As we saw in Section 2.3.3, Delboeuf
insisted that real space has a curvature which is “different at each of
its points and varies there at each instant”, therefore the non-Euclidean
spaces of constant curvature ‘“have no special quality to represent real
space better than the [Euclidean]”(Delboeuf, 1894a, p.372). On the
other hand, If we wish to determine the properties of a space conceived
as a pure form in the Kantian sense, then, once again, it is Delboeuf’s
method which is more appropriate.

3.2. Russell’s relative angles objection

The tendency to assert the relativity of position to the neglect of the
relativity of magnitude is epitomised by Russell (1897, 1898). Towards
the end of the 19th Century, like Helmholtz and Poincaré, Russell
defended the notion that space should be of constant curvature, but that
we had no criterion by means of which to favour Euclidean geometry.
In his “Essay on the foundations of geometry”, Russell emphasises above
all the passivity of space, arguing that “Geometry depends throughout
on the irrelevance of causation” (Russell, 1897, p.112). On this basis
he endorses Helmholtz’s axiom of free mobility, yet rejects Delboeuf’s
argument for space’s “homogeneity”. Russell’s rejection is founded on
a peculiar understanding of the “space-constant” of a non-Euclidean
space of constant curvature, according to which it is not itself a mag-
nitude but a “standard of comparison” between magnitudes (Russell,
1897, §79, §98). Accordingly, a dilation of all magnitudes with respect
to space would leave no observable change since the value of the space
constant would be transformed along with all the magnitudes.

Since Delboeuf himself had unfortunately died abruptly in 1896
at the age of 64, prior to the publication of Russell’s book, his view
was defended instead by the French philosopher-mathematician Louis
Couturat. In a response essay to Russell, Couturat remarks that Russell’s
conception of the space-constant is at odds with other statements
Russell makes such as: “although measurement and the judgment of
quantity express the result of comparison, yet the terms compared must
exist before the comparison” (Russell, 1897, §164, ft.2). Since a given
magnitude can be measured with respect to the space constant, this
implies that the space constant must be a real thing (Couturat, 1898)*:

It is therefore not correct to say that the spatial constant is not a
quantity, how could it not be one, since all the quantities of the
corresponding space can be related to it? We can only measure a
quantity by a quantity of the same kind; now, if we can measure all
the magnitudes of a space in relation to the constant of this space,
this constant must obviously be itself a magnitude, indeed a spatial
magnitude.

In a follow-up article that same year, Russell appears to have
acknowledged Couturat’s critique, however he raises a new argument
against Delboeuf’s ideas (Russell, 1898):

% Translation of: “Il n’est donc pas exact de dire que la constante spatiale
n’est pas une grandeur comment n’en serait-elle pas une, puisque toutes les
grandeurs de I’espace correspondant peuvent lui étre rapportées? On ne peut
mesurer une grandeur que par une grandeur de méme espéce; or, si 'on peut
mesurer toutes les grandeurs d’un espace par rapport a la constante de cet
espace, il faut évidemment que cette constante soit elle-méme une grandeur,
et une grandeur spatiale”.
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I come now to the principal argument in favour of the a priori
character of Euclidean space, namely the argument which derives
from the impossibility of an absolute magnitude. For this discussion,
it will suit me better to adopt Delboeuf’s terminology than to insist
upon my own. [...] The question is: Can it be demonstrated that
homogeneity is an a priori property of space?

On this point, a strong argument in my favour is derived, I believe,
from the absolute magnitude of angles. Those who affirm it to be
evident a priori that the sides of a triangle can be lengthened in
a given ratio without altering the angles, ought to hold, it seems
to me, that it is equally possible to alter all the angles in a given
ratio without altering the sides. But that, we know, is impossible
in all Geometries. If the logically relative nature of all magnitude is
admitted, I cannot see why the argument would apply only to linear
dimensions, and not to angles, which are equally magnitudes.

This rather strange argument by Russell might be dismissed as
an idiosyncrasy were it not that others have claimed the same. It is
independently repeated by Torretti (2012/1978, p.297) for instance,
and even Poincaré (1898) raises the same objection in his own essay of
1898:

It is absurd, they say, to suppose a length can be equal to an abstract
number. But why? Why is it absurd for a length and not absurd for
an angle?

Since Couturat appears not to have addressed this objection, and
Delboeuf did not live to see it, we will here show, on their behalf, that
it is founded on a blatant misconception.?®

The rebuttal to this argument is suggested by Russell’s formulation
of it; the relativity of angles is impossible in all geometries. Why is this?

One does not need to compare two angles in order to measure
them. The angle of intersection of two lines is already a relation, a
relation between the directions of these two lines. An angle denotes an
objective relation between two directions, not a relation of an object
to space. While we may assert the relativity of directions (based on the
isotropy of space), we cannot assert the relativity of angles. Similarly,
while we may assert the relativity of magnitudes (based upon the
homogeneity of space), we cannot assert the relativity of ratios between
magnitudes. We cannot assert the relativity of angles therefore, for the
very same reason that we cannot assert the relativity of ratios between
magnitudes.

To Russell, the fact that angles seem “tied absolutely to their
magnitude” is evidence for the existence of an angular space-constant:

We have an angular space-constant in every space, namely the four
right angles. [...] angles are tied absolutely to their magnitude,
and cannot be conceived as all expanded in a given ratio. We
cannot therefore infer, from the fact that magnitude is relative, the
impossibility of a space-constant.

But Russell makes a mistake when he imagines that 2 is an angular
space constant; Russell is implicitly assuming here that angles denote
relations of things to space. In fact, they do not, rather, as we have
seen, angles denote relations between the directions of lines. Moreover,
angles can also be understood as ratios of magnitudes if we remember
that a radian is simply the quotient of the length of an arc by a radius of
a circle.”” The claim that 2z (which is the angle between two lines that
have the same direction) represents an angle constant everywhere in

26 Note, Russell and Couturat would go on to have an extended multi-year
correspondence (Schmid, 1983).

27 Note also that this definition only hold in a Euclidean space, and that
in a non-euclidean space the angle will need to be defined as a ratio of
infinitesimals.
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space is as meaningless as the claim that at each of its points, space is
endowed with a ratio constant of 1, i.e. the ratio between two lengths of
the same magnitude which might form a standard with respect to which
other ratios can be defined. But we naturally understand that a ratio is
not a relation of an object to space, but rather, represents a relation
between two magnitudes. Delboeuf’s assertion of the homogeneity of
space is, above all, an assertion of its ideality. Real things do not have
real relations to space, but only to one another. If space possessed a
scale constant, then bodies would be endowed with real relations to
space, this property of space would become measurable, and space
would no longer be ideal.

As relations, angles are measurable in and of themselves, whereas
the magnitudes of bodies must be compared to one another if they are
to be measured. This is the source of their relativity. Epistemically, all
measurement is a relation between two given things.?® By means of this
principle, it is easy to rule out the possibility of using non-Euclidean
geometries as forms for phenomena; for if it is claimed that we live,
or should represent ourselves to live, in a space of constant positive or
negative curvature, we must ask upon what reason this claim is based.
There are two options:

1. If this choice is grounded upon some empirical observations,
suppose for instance that we live on the surface of a hypersphere;
then according to the principle stated above, this hypersphere
— whose curvature is measurable with respect to real objects —
must be a real object itself.

. If on the other hand it is not grounded empirically, rather,
this geometry is being used purely in its capacity as a form;
then there is no reason to choose it over the Euclidean. In this
case, Poincaré’s simplicity criterion rules it out, moreover, a
compensatory field would need to be invented to abrogate its
needless effects.

In both cases we find therefore that the geometries of constant, nonzero
curvature, cannot — despite what was asserted by Helmholtz and others
— be used as forms for phenomena on account of the relativity of all
measurement of sizes. This argument naturally carries over to the more
general geometries of changing curvature as well, which are even less
competent to be conceived as forms. We are forced to the conclusion
that space, as pure form, must be Euclidean.?

3.3. Synthetic knowledge and the passivity of space

Given the weakness of the relative angles objection, it is surprising
that Poincaré approves it in his essay of 1898 (Poincaré, 1898). A
decade later, however, Poincaré’s views concerning the relativity of
magnitude seem to have changed. In book II of his volume Science
and Method (Poincaré, 1914/1908), amid comments concerning the
relativity of space, Poincaré affirms the relativity of magnitude, citing
Delboeuf as the principal proponent of this idea®:

28 Note that this principle is very similar to that which Couturat raised in
order to refute Russell’s claim that the space constant is not a real quantity
(as discussed above).

29 As complementary to this argument for the Euclidean nature of space
based on the relativity of magnitude, it is interesting to note that, as Eisenthal
(2024) has very recently pointed out, only Euclidean geometry is consistent
with the relativity of velocity due to geodesic deviation. In the conclusion of
his essay, Eisenthal writes: “If absolute motion is regarded as impossible in
principle — if space is not the kind of thing that objects can move with respect
to — then this idea can be leveraged as a metaphysical argument against the
possibility of space having a constant curvature”.

30 This is a famous passage which has recently drawn attention due to its
suggestion of the possibility of scale-invariant cosmological models. See for
instance Gryb and Sloan (2021).
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there is another [sense of the relativity of space], upon which
Delboeuf [sic] has particularly insisted. Suppose that in the night all
the dimensions of the universe become a thousand times greater:
the world will have remained similar to itself, giving to the word
similitude the same meaning as in Euclid, Book VI. Only what
was a meter long will measure thenceforth a kilometer, what was
a millimeter long will become a meter. [...] When I awake to-
morrow morning, what sensation shall I feel in presence of such
an astounding transformation ? Well, I shall perceive nothing at all.

[...]

Poincaré uses this idea to deny that we can have knowledge of
absolute magnitudes (Poincaré, 2015/1913, p.414), but does not go on
to discuss Delboeuf’s argument for the Euclidean nature of space.

Poincaré’s deliberate avoidance of Delboeuf’s thesis may be con-
nected to his personal enthusiasm about non-Euclidean geometries as
mathematical objects of study. In a well-known anecdote, he recounts
how, out of the blue, upon stepping onto an omnibus in Coutances, it
suddenly hit him with full clarity that “the transformations [he] had
used to define the Fuchsian functions were identical with those of non-
Euclidean geometry” (Poincaré, 2015/1913, p.417). This realisation
would have taken place at some time before 1880 (Gray, 1997). It is
plausible that Poincaré’s personal involvement with the development
of non-Euclidean geometries drove him away from the defenders of
Euclidean apriorism, who, at the time, were largely considered to
be a reactionary force, opposed to those that were creatively driv-
ing the progress of knowledge. This may have led him to seek out
conventionalism as a mid-way compromise between empiricism and
apriorism.

Elsewhere in his writing, however, Poincaré has based his “principle
of relative motion” on an affirmation of the “passivity of space” (Poincaré,
2015/1913, p.83). Russell too, who, even more than Poincaré, de-
fended non-Euclidean geometries of constant curvature, affirmed that
space is passive. But what is the root of this intuition of space’s
passivity?

We have seen above that if we base some notion of the passivity of
space on the invariance of bodies when they are moved with respect to
one another, we will only have learned of the (approximate) passivity
of a physical space (see Section 3.1). This physical space does not permit
the dilations of individual bodies, therefore it may be non-Euclidean.
But who are we to say that this physical space is passive? Why should
physical space allow for the possibility and mobility of rigid bodies?
Even if we put aside the complications raised by modifications due
to heat, surely the question of whether a natural solid retains the
same relations among its parts when it is moved with respect to other
physical bodies is one that should be answered by empirical science.
Indeed this is what was done, through the recognition of the equivalence
principle — which, in the division between force and inertia, places
gravity on the side of inertia and (chrono-)metricity — Einstein fulfilled
Riemann’s ideas and showed once and for all that the physical space
which governs those motions which have traditionally been called
“inertial” is not passive, but dynamical.

But what then of our intuition of the passivity of space, and the
corollary relativity of motion? This law, and the intuition underlying
it, can only be based in a truly Kantian conception of space, a space
abstracted from all contingent phenomena. Notions of space’s pas-
sivity, the relativity of magnitudes, and the relativity of motion are
pervasive in Poincaré’s works. Poincaré at times justifies these ideas
on the basis that contrary hypotheses would be “repugnant to the
mind” (Poincaré, 2015/1913, p. 107-109), but he does not discuss
why we feel this repugnance. I propose that these intuitions we have
of space, of the relativity of motion and of magnitudes, are rooted
in this same methodological concept of space’s homogeneity which is
responsible for providing foundations for Euclidean geometry.

Quite apart from space and its geometry, we saw in Section 1.1 that
for Poincaré, the inductive method, which allows a formula to gener-
alise over an infinity of cases, is the “veritable type of the synthetic
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a priori judgment” since it is “inaccessible to analytic demonstration
and to experience” (Poincaré, 2015/1913, p.39). But what is it that
makes this generalisation possible? Is it the mathematical concept of
infinity? An infinite set which is not ordered, which is not in some
respect homogeneous, does not permit of generalisations. It is not
the notion of infinity that allows for reasoning by recurrence, it is
the concept of symmetry, of the absolute mathematical invariance of
some property under transformations. It is through the “process of
abstraction”, described by Delboeuf, that we gain access to this form of
reasoning; and it is from this basic notion of sameness, which we find in
the notion of homogeneity and of symmetry in general, and which, as
Plato emphasises in the Phaedo (Hackforth et al., 1972), is not known
to us empirically, that Poincaré’s “synthetic a priori” propositions arise.

4. Morals for scientific methodology

As we have seen, unlike other neo-Kantian influences on contem-
porary philosophy of space and time, that of Cassirer and those of
Helmbholtz and Poincaré, Delboeuf’s neo-Kantianism affirms the apri-
ority of Euclidean geometry. It may be argued that Delboeuf’s ideas,
though perhaps interesting, have little relevance to present-day physics
and philosophy of physics, since, after all, Delboeuf did not work di-
rectly in physics, his ideas had little or no influence on the development
of Einstein’s theories, and, unlike Cassirer, his philosophy was not
developed in response to these paradigm-shifting ideas. In what respect,
then, should we take this account seriously?

We have seen throughout this essay that the central insight upon
which Delboeuf grounds his philosophy of geometry — that is, of the
relativity of magnitude — was not unique to him. It dates back at least
to Wallis in 1663, and was recognised by a variety of significant physi-
cists and philosophers over the centuries. We even saw that Leibniz
embarked upon a project very similar to Delboeuf’s in his attempt to
find stable foundations for geometry. Moreover, we have seen that
Delboeuf’s account is defensible in the context of the philosophies of
geometry that were present at the time, it stands up to Russell and
Poincaré’s fallacious relative angles objection (Section 3.2), it is both
more Kantian and more self-consistent than Helmholtz’s allegedly neo-
Kantian approach (Section 3.1), and it even resolves certain problems in
the foundations of Poincaré’s philosophy of mathematics (Section 3.3).

Concerning the applications of these ideas to physics, it is clear that
Delboeuf can only contribute on the methodological side of things. We
may propose a strict distinction between geometrical space, conceived
as a form, and physical space (or space-time), conceived as part of the
content of this form. Indeed, as Lehmkuhl (2014) has shown, even
Einstein showed some restraint against unequivocally accepting the
geometrical interpretation of his theory; for instance in his review of
Meyerson’s La déduction relativiste, he writes (Einstein & Metz, 1928;
Lehmkuhl, 2014):

The fact that the metric tensor is denoted as “geometrical” is simply
connected to the fact that this formal structure first appeared in the
area of study denoted as ‘“‘geometry”. However, this is by no means
a justification for denoting as “geometry” every area of study in
which this formal structure plays a role, not even if for the sake
of illustration one makes use of notions which one knows from
geometry.

Since the advent of general relativity, a vast literature of flat space
alternatives or subtle modifications has been proposed.’! This litera-
ture raises a wide array of methodological advantages of working in

31 See for instance: Arminjon (2002), Broekaert (2005), Cavalleri and
Spinelli (1980), Davies and Falkowski (1982), Deser (1970), Dicke (1957),
Fang and Fronsdal (1979), Gupta (1954), Huggins (1962), Kraichnan (1955),
Lasenby, Doran, and Gull (1998), Logunov and Mestvirishvili (1985), Mittel-
staedt and Barbour (1967), Nachtmann, Schmidle, and Sexl (1969), Ogievetsky
and Polubarinov (1965), Pitts and Schieve (2001), Rosen (1940a, 1940Db),
Thirring (1961), Weinberg (1964a, 1964b).
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flat space, including: (1) the recovery of a well-defined local gravi-
tational energy and of global energy conservation laws (Logunov &
Mestvirishvili, 1985; Rosen, 1940a, 1940b),*? (2) greater consistency
with methods in particle physics (Lasenby et al., 1998), (3) avenues
towards unification with particle physics and prospects of developing
a theory of quantum gravity (Dicke, 1957; Lasenby et al., 1998; Pitts
& Schieve, 2001), (4) the possibility of implementing various inter-
pretations of Mach’s principle (Dicke, 1957; Sciama, 1953), (5) the
development of simplified models of gravity which reproduce some of
the basic results of Einstein’s theory (Arminjon, 2002; Broekaert, 2005).
Many of these models explicitly appeal to Poincaré’s notion of the
conventionality of geometry to justify their methods, however, given
the findings of the present paper, we suggest that Delboeuf’s forgotten
arguments may also help to provide a philosophical grounding for these
flat space approaches.

The topics that Delboeuf’s writings raise, however, are most rel-
evant to certain recent developments in the physics and philosophy
of cosmology. In recent years, Julian Barbour has been attempting to
extend the Machian research program to encompass a requirement for
the scale-invariance of cosmological models (Barbour, 2010). If we
refuse to accept the existence of epistemically inaccessible absolutes,
then the universe must consist only in the relative configuration of its
parts—i.e., its shape. This way of thinking has led to the development
of the theory of Shape Dynamics (Barbour, 2012; Mercati, 2018). If we
recognise that the shape of a body consists of the internal relations
amongst its parts, while its size is an external relation to other bodies,
then the universe as a whole, which has no external reference possesses
only a shape. The central insight discussed in this essay — which was
recognised by Wallis and Delboeuf - is that the reciprocal independence
of shape and size implies the Euclidean nature of space. This essay may
help provide grounds for Barbour et al.’s use of Euclidean space as a
background for their models.

It is only in the context of cosmological models, rather than in the
study of subsystems of the cosmos, that transformations of all bodies
with respect to space, i.e. Leibniz shifts or transformations by similarity,
can be considered. Outside of shape dynamics, the requirement for the
invariance of dynamics under similarity transformations in cosmology
has been called “dynamical similarity”, and it is a growing area of
research in cosmology (Bravetti, Jackman, & Sloan, 2022; Gryb &
Sloan, 2021; Sloan, 2018). We hope that the ideas discussed in the
present paper will help to provide some philosophical context and
justification for these cosmological speculations.

Acknowledgements

I thank James Ladyman, Pooya Farokhi, Noah Stemeroff and my
reviewers for their feedback on the manuscript. I am also thank-
ful to Boris Culina, Joshua Eisenthal, Lucy James, Rupert Smith, Pe-
dro Naranjo, Julian Barbour and Erik Curiel for some stimulating
conversations.

References

Arminjon, M. (2002). The scalar ether-theory of gravitation and its first test in celestial
mechanics. International Journal of Modern Physics A, 17(29), 4203-4208.

Barbour, J. (2010). The definition of Mach’s principle. Foundations of Physics, 40(9),
1263-1284.

Barbour, J. (2012). Shape dynamics. An introduction. In Quantum field theory and
gravity: conceptual and mathematical advances in the search for a unified framework
(pp. 257-297). Springer.

Biagioli, F., et al. (2016). Space, number, and geometry from Helmholtz to Cassirer: vol.
46, Springer.

Bitbol, M., Kerszberg, P., & Petitot, J. (2009). Constituting objectivity: Transcendental
perspectives on modern physics: vol. 74, Springer Science & Business Media.

32 In such theories, the principle of conservation of energy would appear,
not as a contingent empirical fact, but as a guiding methodological principle.

175

Studies in History and Philosophy of Science 106 (2024) 165-176

Bravetti, A., Jackman, C., & Sloan, D. (2022). Scaling symmetries, contact reduction
and Poincaré’s dream. arXiv preprint arXiv:2206.09911.

Broekaert, J. (2005). A modified Lorentz-transformation-based gravity model
confirming basic GRT experiments. Foundations of Physics, 35(5), 839-864.

Carnot, L. (1803). Géométrie de position. JBM Duprat.

Cavalleri, G., & Spinelli, G. (1980). Field-theoretic approach to gravity in the flat
space-time. La Rivista del Nuovo Cimento (1978-1999), 3(8), 1-92.

Couturat, L. (1898). Essay sur les foundements de la géométrie par Bertrand Russell.
Revue de Métaphysique et de Morale, 6(6), 354-380.

Culina, B. (2018). An elementary system of axioms for Euclidean geometry based on
symmetry principles. Axiomathes, 28(2), 155-180.

Culina, B. (2020). Euclidean geometry is a priori. (manuscript).

Culina, B. (2023). Mathematics-an imagined tool for rational cognition. arXiv preprint
arXiv:2306.03909.

Davies, P., & Falkowski, P. (1982). Quantum theory and the equivalence principle.
Proceedings of the Royal Society of London, Series A (Mathematical and Physical
Sciences), 381(1781), 469-478.

De Risi, V. (2005). Leibniz on geometry: Two unpublished texts with translation and
commentary. The Leibniz Review, 15, 127-132.

De Risi, V. (2007). Geometry and monadology: Leibniz’s analysis situs and philosophy of
space. Springer.

De Risi, V. (2015). Leibniz on the parallel postulate and the foundations of geometry,
Springer.

Delboeuf, J. (1860). Prolégoménes philosophiques de la géométrie et solution des postulats.
Mugquardt.

Delboeuf, J. (1893). L’ancienne Et les Nouvelles Géométries: Premiére Etude. L’espace
Réel Est-1l I’Espace Géométrique Euclidien? Revue Philosophique de la France Et
de UEtranger, 36, 449-484, URL: https://gallica.bnf.fr/ark:/12148/cb34349223n/
date1894.r.

Delboeuf, J. (1894a). L’ancienne Et les Nouvelles Géométries. Ii les Nouvelles
Géométries Ont Leur Point d’Attache Dans la Géométrie Euclidienne. Revue
Philosophique de la France Et de UEtranger, 37, 353-383, URL: https://gallica.bnf.fr/
ark:/12148/cb34349223n/date1894.r.

Delboeuf, J. (1894b). L’ancienne Et les Nouvelles Géométries: Troisiéme Etude: Les
Postulats Réels de la Géométrie Euclidienne Sont a la Base des Métagéométries.
Revue Philosophique de la France Et de UEtranger, 38, 113-147, URL: https://gallica.
bnf.fr/ark:/12148/cb34349223n/date1894.r.

Delboeuf, J. (1895). L’ancienne Et les Nouvelles Géométries: IV. — les Axiomes Et les
Postulats de la Géométrie de ’Espace Homogéne. Revue Philosophique de la France
Et de UEtranger, 39, 345-371, URL: https://gallica.bnf.fr/ark:/12148/cb34349223n/
date1894.r.

Deser, S. (1970). Self-interaction and gauge invariance.
Gravitation, 1(1), 9-18.

Dewar, N., & Eisenthal, J. (2020). A raum with a view: Hermann Weyl and the problem
of space. In Thinking about space and time: 100 years of applying and interpreting
general relativity (pp. 111-132). Springer.

Dicke, R. H. (1957). Gravitation without a principle of equivalence. Reviews of Modern
Physics, 29(3), 363.

Einstein, A., & Metz, A. (1928). A propos de La Déduction Relativiste de M. Emile
Meyerson. Revue Philosophique De La France Et De L’étranger, 105, 161-166.

Eisenthal, J. (2024). The absolute motion detector. (manuscript).

Fang, J., & Fronsdal, C. (1979). Deformations of gauge groups. Gravitation. Journal of
Mathematical Physics, 20(11), 2264-2271.

Folina, J. M. (2016/1992). Poincaré and the philosophy of mathematics. Springer.

Friedman, M. (2001). Dynamics of reason. Csli Publications Stanford.

Friedman, M. (2009). Einstein, kant, and the relativized a priori. In M. Bibtol,
P. Kerzberg, & J. Petitot (Eds.), Constituting objectivity: transcendental perspectives
in modern physics (pp. 253-268). Springer.

Friedman, M. (2014/1983). Foundations of space-time theories: Relativistic physics and
philosophy of science. vol. 113, Princeton University Press.

Gray, J. (1997). Poincaré in the archives-two examples. Philosophia Scientiae, 2(3),
27-39.

Gryb, S., & Sloan, D. (2021). When scale is surplus. arXiv preprint arXiv:2103.07384.

Gupta, S. N. (1954). Gravitation and electromagnetism. Physical Review, 96(6), 1683.

Hackforth, R., et al. (1972). Plato’s phaedo: vol. 120, Cambridge University Press.

Heinzmann, G. (2001). The foundations of geometry and the concept of motion:
Helmbholtz and Poincaré. Science in Context, 14(3), 457-470.

Helmholtz, H. (1866). On the factual foundations of geometry. In Beyond geometry:
classic papers from Riemann to Einstein (pp. 47-52).

Helmbholtz, H. (1870). The origin and meaning of geometrical axioms (1870). In Beyond
geometry: classic papers from Riemann to Einstein (pp. 53-70).

Helmholtz, H. v. (1876). The origin and meaning of geometrical axioms. Mind, 1(3),
301-321.

Hill, M. (1925). On the substitution of Wallis’s postulate of similarity for Euclid’s
postulate of parallels. In Mathematical proceedings of the cambridge philosophical
society: vol. 22, (no. 6), (pp. 964-969). Cambridge University Press.

Huggins, E. R. (1962). Quantum mechanics of the interaction of gravity with electrons:
theory of a spin-two field coupled to energy (Ph.D. thesis), California Institute of
Technology.

General Relativity and


http://refhub.elsevier.com/S0039-3681(24)00103-1/sb1
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb1
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb1
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb2
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb2
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb2
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb3
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb3
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb3
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb3
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb3
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb4
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb4
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb4
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb5
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb5
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb5
http://arxiv.org/abs/2206.09911
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb7
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb7
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb7
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb8
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb9
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb9
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb9
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb10
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb10
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb10
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb11
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb11
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb11
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb12
http://arxiv.org/abs/2306.03909
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb14
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb14
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb14
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb14
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb14
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb15
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb15
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb15
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb16
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb16
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb16
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb17
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb17
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb17
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb18
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb18
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb18
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
https://gallica.bnf.fr/ark:/12148/cb34349223n/date1894.r
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb23
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb23
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb23
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb24
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb24
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb24
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb24
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb24
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb25
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb25
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb25
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb26
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb26
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb26
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb27
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb28
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb28
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb28
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb29
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb30
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb31
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb31
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb31
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb31
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb31
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb32
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb32
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb32
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb33
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb33
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb33
http://arxiv.org/abs/2103.07384
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb35
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb36
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb37
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb37
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb37
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb38
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb38
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb38
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb39
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb39
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb39
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb40
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb40
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb40
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb41
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb41
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb41
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb41
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb41
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb42
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb42
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb42
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb42
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb42

J. Fay

Jammer, M. (2013). Concepts of space: the history of theories of space in physics: third.
Courier Corporation.

Kant, 1. (1970/1786). In J. Ellington (Ed.), Metaphysical foundations of natural science.
Indianapolis: Bobbs-Merrill, Trans. (Original work published 1786).

Kant, I. (2004/1783). Immanuel Kant: Prolegomena to any future metaphysics: That will
be able to come forward as science: With selections from the critique of pure reason.
Cambridge University Press.

Kraichnan, R. H. (1955). Special-relativistic derivation of generally covariant gravitation
theory. Physical Review, 98(4), 1118.

Laplace, P. S. (1835). Oeuvres complétes de Laplace: vol. 6, Gautier-Villars.

Lasenby, A., Doran, C., & Gull, S. (1998). Gravity, gauge theories and geometric algebra.
Philosophical Transactions of the Royal Society of London. Series A. Mathematical,
Physical and Engineering Sciences, 356(1737), 487-582.

Lehmkuhl, D. (2014). Why Einstein did not believe that general relativity geometrizes
gravity. Studies in History and Philosophy of Science. Part B. Studies in History and
Philosophy of Modern Physics, 46, 316-326.

Leibniz, G. W. (1858). Leibnizens mathematische Schriften, Herausgegeben Von C. L
Gerhardt: vol. 1, Druck und Verlag von H. W. Schmidt.

Lie, S. (1893). Theorie der transformationsgruppen: vol. 3, BG Teubner.

Lobachevsky, N. (1829a). A concise outline of the foundations of geometry. Kazan:
University of Kazan Messenger.

Lobachevsky, N. I. (1829b). On the principles of geometry. Kazansky Vestnik, 25(23),
178-187.

Logunov, A. A., & Mestvirishvili, M. A. (1985). Relativistic theory of gravitation.
Progress of Theoretical Physics, 74(1), 31-50.

Mercati, F. (2018). Shape dynamics: Relativity and relationalism. Oxford University Press.

Mittelstaedt, P., & Barbour, J. (1967). On the geometrical interpretation of the theory
of gravitation in flat space. Zeitschrift fiir Physik, 203(1), 82-90.

Nachtmann, O., Schmidle, H., & Sexl, R. (1969). On the structure of field theories
of gravitation(linear field theory of gravitation by considering gravitational field
functions decomposition into spin components). Acta Physica Austriaca, 29(4),
289-299.

Ogievetsky, V., & Polubarinov, I. (1965). Interacting field of spin 2 and the Einstein
equations. Annals of Physics, 35(2), 167-208.

Pitts, J. B., & Schieve, W. C. (2001). Slightly bimetric gravitation. General Relativity
and Gravitation, 33(8), 1319-1350.

Poincaré, H. (1898). On the foundations of geometry.... Open Court Publishing Company.

Poincaré, H. (1905/1902). Science and hypothesis. Science Press.

Poincaré, H. (1914/1908). Science and method. Dover Publications.

176

Studies in History and Philosophy of Science 106 (2024) 165-176

Poincaré, G. B. (2015/1913). The foundations of science. In Cambridge library collection.
History of science, Cambridge University Press.

Riemann, B. (1854). In H. Weyl (Ed.), Uber die Hypothesen, welche der Geometrie zugrunde
liegen [1854]. New York: Chelsea: Das Kontinuum und andere Monographien.
Riemann, B. (1876). Gesammelte mathematische Werke und wissenschaftlicher Nachlass.

BG Teubner.

Riemann, B. (2007/1853). Two excerpts from Riemann’s Nachlass (1853). In Beyond
geometry: classic papers from Riemann to Einstein (p. 41).

Rosen, N. (1940a). General relativity and flat space. I. Physical Review, 57(2), 147.

Rosen, N. (1940b). General relativity and flat space. II. Physical Review, 57(2), 150.

Russell, B. (1897). An essay on the foundations of geometry, by Bertrand AW Russell....
The University Press.

Russell, B. (1898). Les axiomes propres a euglide: Sont-ils empiriques? Revue de
Meétaphysique et de Morale, 6(6), 759-776.

Ryckman, T. A. (2003). The philosophical roots of the gauge principle: Weyl and
transcendental phenomenological idealism. Brading and Castellani (2003), 61-88.

Ryckman, T. (2005). The reign of relativity: philosophy in physics 1915-1925. Oxford
University Press.

Schmid, A.-F. (1983). La correspondance inédite Couturat-Russell.

Sciama, D. W. (1953). On the origin of inertia (Ph.D. thesis), University of Cambridge.

Sloan, D. (2018). Dynamical similarity. Physical Review D, 97(12), Article 123541.

Therrien, V. L. (2020). A diagram of choice: The curious case of Wallis’s attempted
proof of the parallel postulate and the axiom of choice. In Diagrammatic represen-
tation and inference: 11th international conference, diagrams 2020, Tallinn, Estonia,
August 24-28, 2020, Proceedings 11 (pp. 74-90). Springer.

Thirring, W. E. (1961). An alternative approach to the theory of gravitation. Annals of
Physics, 16(1), 96-117.

Torretti, R. (2012/1978). Philosophy of geometry from Riemann to Poincaré: vol. 7,
Springer Science & Business Media.

Wald, R. M. (2010). General relativity. University of Chicago Press.

Wallis, J. (1696). De Postulato Quinto et Definitione Quinta. Lib. 6. Euclidis; Disceptatio
Geometrica. De Algebra Tractatus; Historicus & Practicus. Cumvariis Appendicibus,
665-678.

Weinberg, S. (1964a). Derivation of gauge invariance and the equivalence principle
from Lorentz invariance of the S-matrix. Physics Letters, 9(4), 357-359.

Weinberg, S. (1964b). Photons and gravitons in S-matrix theory: Derivation of charge
conservation and equality of gravitational and inertial mass. Physical Review,
135(4B), B1049.


http://refhub.elsevier.com/S0039-3681(24)00103-1/sb43
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb43
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb43
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb44
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb44
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb44
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb45
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb45
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb45
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb45
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb45
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb46
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb46
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb46
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb47
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb48
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb48
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb48
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb48
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb48
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb49
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb49
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb49
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb49
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb49
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb50
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb50
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb50
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb51
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb52
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb52
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb52
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb53
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb53
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb53
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb54
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb54
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb54
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb55
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb56
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb56
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb56
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb57
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb58
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb58
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb58
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb59
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb59
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb59
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb60
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb61
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb62
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb63
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb63
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb63
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb64
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb64
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb64
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb65
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb65
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb65
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb66
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb66
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb66
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb67
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb68
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb69
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb69
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb69
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb70
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb70
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb70
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb71
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb71
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb71
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb72
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb72
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb72
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb73
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb74
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb75
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb76
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb77
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb77
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb77
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb78
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb78
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb78
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb79
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb80
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb80
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb80
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb80
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb80
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb81
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb81
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb81
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb82
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb82
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb82
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb82
http://refhub.elsevier.com/S0039-3681(24)00103-1/sb82

	On the relativity of magnitudes
	Introduction
	Preliminary remarks on Poincare on space
	Mathematical reasoning 
	Empirical ground of space
	Mathematical idealisation

	The problem of space's geometry 
	The axiom of free mobility
	Riemann
	Helmholtz
	Poincare

	The relativity of magnitudes I: before Delboeuf
	Wallis (1663)
	Carnot and Laplace

	The relativity of magnitudes II: Delboeuf
	The homogeneity of space
	Leibniz and the definition of the straight
	Neo-Kantianism?


	Reflections and discussions
	Mobility or Leibniz shifts?
	Russell's relative angles objection
	Synthetic knowledge and the passivity of space

	Morals for scientific methodology
	Acknowledgements
	References


