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Abstract

[Translator’s note]: This is an English translation of a paper by Hans Reissner originally published in 1915 (the original German
version is attached at the end of the document). Hans Reissner was an accomplished aeronautical engineer and theoretical physicist;
the first person in history to design a functional fully metal aircraft (the Reissner canard), and also the first to derive the Reissner-
Nordstrom metric for a spherically symmetric, charged, stationary mass in general relativity. This paper, which is a follow-up from a
previous paper Reissner published in 1914, offers insight into a strategy for implementing Mach’s principle, however it goes further
than what Mach suggested, since Reissner shows that according to his theory, we can interpret gravity as arising necessarily as a
consequence of the relativisation of inertia. In other words, Reissner offers a hypothetical explanation for the existence of gravity.
Historically, Reissner appears to be the first person to have explicitly raised this possibility. Although the paper was formerly
partially translated by Julian Barbour, I am providing a full translation here to help highlight the unique aspects of this second paper

that were lacking in the first.

Classical mechanics introduces inertia and gravity as inde-
pendent phenomena and sees inertia as a resistance to acceler-
ation in relation to absolute space. The fact that both of these
forces are proportional to the same mass appears in classical
mechanics as a coincidental relationship between these phe-
nomena. Nonetheless, the dimensions of the gravitational con-
stant, which have not yet been physically interpreted, and the
strange Gaussian system of measurements which involves the
elimination of mass on account of this relationship between
gravity and inertia, give us food for thought.

The relationship of acceleration to an absolute space could
be assumed as long as a resting light ether could be used as
a reference system. As early as 1883, Mach’s mechanics de-
clared that the notion that there could be a privileged reference
system independent of material processes is absurd, and gave
hints that the conception of an acceleration against space might
be an intermediary to one compared to all other masses.!

In particular, Mach addressed the argument of absolute me-
chanics which holds that absolute centripetal accelerations can
be identified by the presence of centrifugal forces, and pointed
out that these centrifugal forces are only observed in systems of
very small extent that are rotating against the fixed stars.

But recently Mr. Abraham and Mr. Mie have argued against
Einstein’s demand for the covariance of the physical laws with
respect to arbitrary transformations of the reference system on
the basis that such a covariance would contradict the observed
inertial forces.”

'E. Mach, Die Mechanik in ihrer Entwickung, 6th ed., 1908, p. 250—253

2Discussion note by G. Mie on Einstein’s lecture, this journal. 14, 1264,
1913; Abraham, Die neue Machanik, Scienta Jan. 1914, Sur le probléme de la
relativité, Juli 1914.
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Only recently, after I had illustrated the possibility of
acceleration-relative mechanics using a concrete case, has Mr.
Abraham withdrawn his fundamental objection.

In the essay in question, I stated and for the first time quan-
titatively formulated the idea that the relativity of acceleration
can only be implemented if the centrifugal forces of a rotating
body correspond to centripetal forces of all other masses so that
there is no dynamical difference between a body that rotates
with respect to all other masses and the converse situation in
which [180] all other masses rotate with respect to the body.?

However, my knowledge of the equality of inertial and grav-
itational masses had not been included as necessary, since my
approach involved separate kinetic and potential energy func-
tions.

Mr. Einstein’s equivalence hypothesis which asserts the me-
chanical and optical identity of an acceleration field with a field
of constant gravity seems to imply the deeper meaning that
gravity is also a resistance to acceleration. Of course, this idea
could not be applied directly to inhomogeneous gravitational
fields. The basic assumption of Hertz’s principles of mechanics
should also be remembered here, according to which all forces
should be viewed as inertial forces. However, Hertzian me-
chanics is completely removed from the idea of the relativity of
inertia. It is therefore all the more remarkable that it is precisely
this idea that makes it possible to fulfill Hertz’s ideal require-
ment of representing gravity as an inertial force.

In this direction, the appearance of the above-mentioned
counterparts of the centrifugal force led me to attempt to make

3H. Reissner, Uber die Relativitat der Beschleunigungen in der Mechanik.
This journal. 15, 371 bis 375, 1914.
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these forces responsible for gravity. If I am successful, grav-
ity would be understood as a direct and necessary consequence
of the relativity of acceleration, the identity of the gravitational
and inertial masses would be shown to be self-evident and the
gravitational field would not only be equivalent to an acceler-
ated space, as Einstein proposes, but gravity itself would be
identified as a resistance to relative acceleration.

First, the following postulates should be derived:

1. The inertial force of mechanics can be represented as the
resistance to translational accelerations of a mass relative
to all other masses in space.

2. Weight, or Newtonian gravity can be represented as the
inertial force of the relative rotation of masses.

The first postulate is in principle already contained in my
earlier essay. There the kinetic energy of a closed system of
2 mass points, m; and m, at a distance r, T = mimai? f(r) was
set. However, at that time I saw no reason not to equate f(r) toa
constant and assumed a separate force function for gravitation.

Here, however, the function f(r) of the mutual distance
should be used in such a way that no additional force function
is required for gravitation.

Progress should therefore initially consist in deriving inertia
and gravitation solely from kinetic energy.

The kinetic energy for a system of two masses is given by:
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where ry, is the distance between the points s and ¢ with mass
constants u, and y,, and 7y is the rate of change of this dis-
tance. The question of how these distances and speeds are to be
measured should be ignored for the time being.

The Lagrangian equations then provide the forces between
the mass points:
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The entire system is now referred to an arbitrary Cartesian
coordinate system, so that one can set:
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Furthermore, let the force be in the direction of an axis, e.g.
the X-axis, determined as the sum of the projections of the ra-
dial forces to:

X, = Z Ko(xs — Xt)r;tl
a0 1, _
= Zﬂst (ySlrxtl - Er?trstz) (x5 — xt)rstl (3

If one lets the origin of the coordinate system correspond to
the position and velocity of the point ¢, [181] but not its accel-
eration, meaning that we choose

X¢y X5 Vs V15 21> and Z, =0

then we can write:

o . . 1.0
X = (XX = Voys — Zizdry + 7y

Here #, is the counter-acceleration of the point s against the
origin of the coordinate system.

This makes the X-component of the force similar to my ear-
lier paper:
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Newton’s basic equation ‘mass times acceleration equals
force’ applies if we set:
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In addition, one must calculate the last sum of the right-hand
side of eq. (4), either by setting it equal to zero and thus using
it to determine the movement of the coordinate system, or by
using it as an external force, for instance by considering it as a
gravitational force or by using this sum partly for one purpose
and partly for another.

The equivalence of mechanics for inertial forces and the
other forces of nature lies in these various possibilities.

If one were to use the statements of eq. (5), then instead
of Newton’s scalar theory of inertia with the scalar mass, an
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initially three-dimensional tensor theory of inertia with the val-

ues in eq. (5) specifying 6 components of a symmetrical ten-

sor would arise. It is known that the generalized Einstein-

Grossmann theory of relativity, which of course has a much

more general starting point, also tends towards this approach.
It should also be noted that the mass

Mt _
my = ? Zﬂsrstl

of a point cannot be a global constant even in a scalar theory, but
is rather a function of position. However, for those forces that
also turn out to be proportional to the mass, this variability will
not be apparent. This variability is common to all acceleration-
relative theories.*

On the other hand, the fact that classical mechanics does a
good job with mass as a constant scalar quantity must probably
be taken as an indication that we are in a region of space with
a sufficiently symmetrical mass distribution, unless it turns out
that in a more general tensorial theory the changing character of
the inertial mass appears as unchanging due to the covariance
of our measuring instruments. However, since the generalized
theory of relativity allows for the possibility of detecting a cur-
vature of our measurement of light rays and a shift of spectral
lines in a gravitational field, the second interpretation seems
less likely to me. It is also on account of eq. (4) that we may
raise the question of whether there might be signs that inertial
forces in the plane of the Milky Way are greater than those per-
pendicular to it.

The fact that one can actually show that the final sum in eq.
(4) can be understood as a gravitational effect, should now be
proven in detail. The last term of the force expression (4) de-
notes a force along the line connecting the two mass points of
magnitude:
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We should now calculate the form that this force takes when
two revolving bodies, each rotating about their axis of symme-
try, face each other at a distance that is large compared to the
dimensions of the bodies.

A mass element du is accelerated away from its axis of rota-
tion by Va—z, where v is the peripheral speed and a is the radius of
rotation.

The acceleration component located at the shortest distance
between both axes of rotation, initially assumed to be parallel,
is then % cos ¢ (see figure) and the term becomes:
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Integrating over a ring element, we get:
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Figure 1: [Translator’s note]: Diagram taken from the original paper.

where v is a line density of ¢ along the specified sought circle.
For small a/r this integral becomes:
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The attraction of the whole body with the index s onto an-
other non-rotating body with the mass coefficient y, at a dis-
tance r becomes:
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where k; is the radius of gyration and w; the angular velocity of
the body s.

If both masses rotate, the effects add up at small % so that the
force of attraction becomes:
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The form of this force law already corresponds to Newton’s
gravity, but the attraction of a particle rotating in this way is not
uniform in all directions but greatest perpendicular to the axis
of rotation and equal to zero in this axis.

If the connecting line (the distance r) of the centers of two
masses is at an angle ¢ to the axis of rotation of one of the
particles, then the component of the centripetal acceleration is
along these connecting lines % cos ¢ siny and the distance of
this particle from the center of the other mass r + a cos ¢ sinyr
for small Z. According to this assumption, we multiply the
integrals (6a), (6b) by sin’ ¥, and if we take the attractive force
for the case that the axis of rotation forms the angle  with the
distance r denoted by K, we obtain

K, = K sin’ y

One could now consider the structure of gravitating matter in
such a way that rotating particles are distributed in every vol-
ume element without any axis of rotation being present.



Then, using the example of 3 rotating particles with mutually
perpendicular axes of rotation, it can be seen that the resulting
force on another in a prescribed direction must amount to:
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Here, for example, within y; is the sum of all mass coeffi-
cients of the individual rotating particles of the mass (of index
s) under consideration. However, the mass under consideration,
although it contains perhaps a large number of irregularly dis-
tributed rotating particles, has a very small extent compared to
the distance to the particles of the second mass of index z, so
that ry; can be understood as the distance between the centers of
gravity of the two masses.

If Newton’s law of attraction is to be expressed in (2b), the
following relationship must hold:
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where vy is the gravitational constant.
So according to equation (5):
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where ¢, and ¢,, are the potential functions Z = at the locations
of the masses under consideration.

However, the gravitational constant iy could only be a uni-
versal constant in a space of such an extent where the varia-
tion of the rotational constant contained in the mass unit en-
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ergy e = 5~ and the potential function ¢ are sufficiently small.

Then it would be given by:
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On the other hand, it was found above, in accordance with
Mr. Einstein’s theory of gravitation, that the mass value that
determines the inertia must also depend on the position in re-
lation to all other masses, or more precisely the [183] potential
function ), ’;’ It is therefore to be expected that the gravitational
constant should also depend on this value.

Because of the transition to the theory of relativity, it is now
useful to represent the above results using the kinetic energy 7
of the entire system.

This approach is based on the total energy of all the masses

in space:
T = %ZZﬂsﬂtrﬂ Fot -

The part relating to a single mass y,, excluding any self-

interaction, is:
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Previous considerations have shown that, depending on the
nature of the mass distribution, this energy can essentially be
broken down into a part that comes only from the movement of

T,

the point under consideration and a part that comes solely from
the movement of all other points:
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where 7, are the mean rates of change of the distances from the
mass , considered to be at rest with its center of gravity.

The first term gives the classic expression for the kinetic en-
ergy of a mass m, = g, 3, & moving at speed g. Furthermore,
according to earlier considerations, the second term must cor-
respond to the gravitational energy if in 7 only the rotations of
the masses g, but not their translations, are considered.

The evaluation of this second term has actually already been
accomplished by the expletive (2b) found earlier. This requires
an energy of the amount
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where the energy density of the rotation of all elementary par-

ticles relative to the unit mass must be assumed to be the same.
The complete energy expression is then:
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From this expression we get both the inertial force and the

force of gravity in the form:
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This expletive would perfectly match the Newtonian if the
same proportionality between mass coefficient y and mass m
existed everywhere. However, this is only approximately the
case if the potential function Y, £ changes gradually enough.

Using that
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so the gravitational constant as above is:
Kw?
—.
U
(z%)

Here too, as in all newer theories of gravity, the Laplace-
Poisson potential equation of gravity is only approximately
valid, although this approximation must turn out to be ex-
tremely accurate.

Furthermore, the forms of force (4a) and (4b) fulfill the con-
dition that at all points of the gravitational field all masses ex-
perience the same acceleration (fall at the same speed), as soon
as the rotational energy of the mass unit is not related to its
material composition, but only depends on the location.

It is desirable to classify the results achieved so far into a field
theory that also includes the changes over time and satisfies the
postulate of relativity. [184]

Now, according to the note on page 181, it is certain that
a connection cannot be made to Nordstrom’s scalar theory of
gravity, since there the inertial mass decreases as other masses
approach, whereas in our theory it increases similarly to Ein-
stein’s theory. It also seems that the character of the above ap-
proach points more towards a tensor theory.

However, I have not yet been able to fully connect with
Einstein-Gromann’s generalized relativity scheme. It seems
to me that this is difficult for the following reason.

The complete differential equations of the gravitational field
and the complete covariant stress-energy tensor of the mass-
flow in Einstein’s last publications, which together form the
generalization of the Laplace-Poisson potential equation, rep-
resent a mathematically very difficult problem. However, Ein-
stein himself gains from them nevertheless, he still obtained
valuable results by using the line element of the previous the-
ory of relativity as a first approximation and finding a correction
assumed to be small from the energy tensor of this first approx-
imation using the now linear differential equations of the field.

Through this procedure he consciously foregoes any insight
into the mechanical structure of the initial values of the line ele-
ment, which he takes as given, even though they would have to
follow from the differential equations. However, it is precisely
this physical idea that is provided by the approach given here,
even if only for the equilibrium of the field, which can perhaps
only be integrated into Einstein’s general field equations after a
different integration method. I believe in such a connection be-
cause my results regarding the dependency between inertia, the
potential function and the speed of light are built in a very sim-
ilar way to Einstein’s, and Einstein’s scheme must be of wide
applicability.

In what follows, I will provide a scalar approach to a field
theory, which is obeyed in sufficiently small regions of the for-
mer recent theory and contains the above results as the first ap-
proximation. I set the line element

y=6 (7
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where ¢y is a very large constant, ¢ is the speed of the point un-

der consideration, and ¢ is the four-dimensional potential obey-
ing the equation

O¢ = —4r0,

and ¢ is the value of ¢ at the coordinate starting point. Let Q
be the frame mass density of u and k*>w? should again be treated
as a constant.

The Lagrangian function has the value:
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The inertial force then becomes:
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The gravitational force takes the value:
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The previous forces of eq. (4a) and (4b) obviously represent
the first approximation of these latter force expressions, which
mean an extension of Newton’s force law for the case of finite
velocity.

If one further assumes, as in the theory of relativity, that the
line element ds = O results in a speed g equal to the speed of
light, then this becomes
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Which therefore decreases as one approaches a mass. cy is
the speed of light at the starting point if there is no mass rota-
tion.

The energy of a mass point is also obtained as a generaliza-
tion of the earlier energy expression (1a) using the usual ansatz
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The energy value also decreases as it approaches other masses.

The above expressions derived from the four-dimensional
line element becomes the well-known expressions of the
Einstein-Minkowski theory of relativity with the starting point
of the coordinate system in the absence of mass rotation in the
known distribution of all other masses. [185]

The gravitational forces that arise when masses rotate under
the assumption of the relativity of inertia are due to the fact
that in every rotation the centripetal accelerations that generate
attraction are closer to all other masses than those that produce
repulsion. The often asked question about the possibility of
negative masses is therefore completely negated.

This mode of operation of rotation is also inherent in other
forms of movement if one allows their temporal average val-
ues instead of the forces and accelerations. Every collection of
mass particles that somehow move through one another must
exert a gravitational attraction on other masses, as long as the



relativity of inertia assumed above is correct. The calculation
would depend on the temporal and spatial averages of ui?r~!
and the average effect would be equivalent to that of a rotation
of a certain amount.

Finally, one can now raise the question of whether the general
rotation of all mass particles can also be interpreted from the
perspective of the relativity of inertia. In fact, every torque of
the inertial forces must be absorbed by corresponding torques
of all other masses, so that every change in the angular motion
of one body must be followed by a corresponding change in the
angular motion of all other bodies. There must therefore be a
certain balancing of the rotations of all masses.

Summary

An earlier approach to the acceleration-relative form of the
kinetic energy of masses is simplified in such a way that the
gravitational effect appears as a pure inertial effect without the
addition of potential energy.

However, this requires the hypothesis that all masses that ex-
cite a gravitational field have rotation and that the axes of rota-
tion are irregularly directed and distributed. The gravitational
force is then represented as a mutual centripetal force.

With this approach, the inert mass is only found approxi-
mately as a scalar, if one assumes sufficient symmetry in the
mass distribution of space. The size of both inertial and attrac-
tive masses depends in a very specific way on the distribution
of matter.

While the first approach of an elementary law of two masses
seems to correspond to a tensor theory of inertia and gravity. A
scalar theory of gravity is established, assuming a certain sym-
metry of the mass distribution and mass rotation of our space,
and the essential results, previously understood as long-distance
effects, are found again with the help of a Lagrangian function
of the field. This results in an increase in the inertial mass and
a reduction in the speed of light and energy when masses ap-
proach.

(Received April 1, 1914.)
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grifung: ,So also sieht eine Exzellenz aus®, | lichen Verdienste um Hochschule und Wissen-

flog der freundliche Schein des alten herzlichen
Lachens verschonernd iiber die bedeutenden Ziige.
Die Unterhaltung konnte nur kurz sein, da ich
bald die Ermiidung merkte. Neben ihm lagen
Zeitungen, deren Durchsicht seine Hauptbe-
schiftigung war. Nach einigen Monaten, wih-
rend weit drauBen .das Schlachtgewiih] tobte und
die Geschiitze donnerten, ist er dann friedlich
und sanft entschlafen.?)

Die Aufbahrung erfolgte in der Universitit;
deren Rektor, der Theologieprofessor Maus-
bach, und Hittorfs dritter Nachfolger, Ger-
hard Schmidt, sprachen am Sarge und ge-
dachten mit warmen Worten seiner unvergang-

1) Hittorfs wertvoller wissenschaftlicher Biicher-
bestand wurde seiner frither ausgesprochenen Absicht ent-
sprechend von den Verwandten dem von ihm begriindeten,

und so lange geleiteten physikalischen Institut iiber-
wiesen,

schaft.

An einer anderen Stelle!) habe ich diese in
die Worte zusammenzufassen versucht: ,»Nicht
in der Zahl der in Angriff genommenen Fragen
liegt seine GroBe, aber in dem scharfen Blick
fir die Auswahl bedeutungsvoller Probleme, in
der gleichmiaBigen Beherrschung der chemischen
wie der physikalischen Seite, in der iiberaus
sorgfiltigen und zuverldssigen experimentellen
Durchfiihrung seiner Untersuchungen und in der
eigenartigen Auffassung, die meist in schroffem
Gegensatz zu den seinerzeit herrschenden An-
sichten stehend, doch auf die Dauer durchdrang
und sich behauptete. So hat er auf jedem der
bearbeiteten Gebiete Bahnbrechendes geleistet.

1) Vorwort zum Neudruck der Arbeit von Pliicker
und Hittorf ,,Uber die Spektren der Gase und Dimpfe*,
Leipzig 1904.

ORIGINALMITTEILUNGEN.

Uber eine Moglichkeit die Gravitation als
unmittelbare Folge der Relativitdt der Trig-
heit abzuleiten.

Von H. ReiBner, Charlottenburg.

Die klassische Mechanik fiihrt Trigheit und
Schwere als voneinander unabhingige Erschei-
nungen ein und faBt die Trigheit als einen
Widerstand gegen die auf einen absoluten
Raum bezogene Beschleunigung auf. DaB beide
Krifte einer und derselben GroBe nimlich der
Masse proportional sind, erscheint in der klas-
sischen Mechanik als eine zufillige Beziehung
beider Erscheinungen, obgleich die bisher physi-
kalisch noch nicht gedeutete Dimension der
Gravitationskonstante bzw. das merkwiirdige
GauBsche MaBsystem, das durch die Beziehung
zwischen Gravitation und Trigheit eine Map-
einheit z. B. die Masse eliminiert, zu denken
geben.

Die Beziehung der Beschleunigung auf einen
absoluten Raum durfte solange angenommen
werden als man einen ruhenden Lichtither als
Bezugssystem zugrunde legen konnte. Immerhin
hat die Machsche Mechanik schon im Jahre
1883 die Vorstellung, daB es ein ausgezeich-
netes von den materiellen Vorgingen unabhin-
giges Bezugssystem geben konnte, als absurd
erklart und Andeutungen iiber eine Auffassung
der Beschleunigung gegen den Raum als einer

mittleren gegen alle {ibrigen Massen gemacht?).

1) E. Mach, Die Mechanik in

ihrer Entwicklung,
6. Aufl,, 1908, S. 250—253.

Insbesondere beschiftigte sich Mach schon
mit dem Argument der Absolutmechaniker, da
man deswegen von absoluten Zentripetalbeschleu-
nigungen sprechen diirfe, weil sie durch Zentri-
fugalkrifte erkennbar seien, und wies darauf
hin, daB die Zentrifugalkrifte nur beobachtet
werden bei rotierenden Systemen von einer gegen
den Fixsternhimmel sehr kleinen Ausdehnung.

Aber noch kiirzlich machten die Herren
Abraham und Mie gegen die Einsteinsche
Forderung der Kovarianz der physikalischen
Gesetze gegeniiber beliebigen Transformationen
des Bezugssystems geltend, daB eine solche
Kovarianz doch den beobachteten Tragheits-
kraften widersprachel).

Erst neuerdings, nachdem ich inzwischen
die Méglichkeit einer beschleunigungsrelativen
Mechanik an einem konkreten Fall veranschau-
licht hatte, hat Herr Abraham seinen prinzi-
piellen Einwand zuriickgezogen.

In dem betreffenden Aufsatz habe ich wohl
zum ersten Male ausgesprochen und quantitativ
formuliert, daB eine Beschleunigungsrelativitit
nur durchfiihrbar ist, wenn den Zentrifugalkriften
eines rotierenden Korpers Zentripetalkrifte aller
ibrigen Massen entsprechen, so zwar daB
kein dynamischer Unterschied dazwischen ist,
ob der Korper gegen alle iibrigen Massen, oder

1) Diskussionsbemerkung G. Mie, zum Vortrage Ein-
steins, diese Zeitschr. 14, 1264, 1913; Abraham, Die
neue Mechanik, Scientia Jan. 1914, Sur le probléme de
la relativité, Juli 19r14.
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alle iibrigen Massen gegen den Korper ro-
tieren?).

Jedoch hatten meine damaligen Ansitze die
Gleichheit der trigen und der schweren Masse
nicht als notwendig enthalten, da dort der An-
satz mit gesonderter kinetischer und potentieller
Energie gemacht wurde.

Schon Herrn Einsteins Aquivalenzhypo-
these der mechanischen und optischen Identitat
eines Beschleunigungsfeldes mit einem Felde
konstanter Schwere schien .den tieferen Sinn
zu bergen, daB auch die Schwere ein Wider-
stand gegen Beschleunigung sei. Freilich konnte
man dort diese Vorstellung nicht durchfiihren,
wenn man zu inhomogenen Gravitationsfeldern
iberging. Auch an die Grundannahme der
Hertzschen Prinzipien der Mechanik moge hier
erinnert werden, derzufolge alle Krafte als Trag-
heitskriafte aufgefalbt werden sollten. Jedoch
steht der Hertzschen Mechanik die Vorstellung
der Relativitit der Tragheit ganz fern. Umso
bemerkenswerter ist es, dal grade diese Vor-
stellung es ermoglicht, die Hertzsche Ideal-
forderung der Darstellung der Gravitation als
Tragheitskraft zu erfiillen.

In dieser Richtung fiihrte das Auftreten der
oben erwidhnten Gegenkrifte der Zentrifugalkraft
mich nun zu dem Versuch, diese Krifte fiir
die allgemeine Gravitation verantwortlich zu
machen. Gelang er, so war damit die Gravi-
tation als unmittelbare und notwendige Folge
der Beschleunigungsrelativitit gedeutet, die Iden-
titit zwischen schwerer und trdger Masse als
selbstverstindlich erwiesen und das Schwerefeld
nicht bloB wie bei Einstein &dquivalent einem
beschleunigten Raum, sondern die Schwerkraft
selbst identisch mit einem Widerstande gegen
relative Beschleunigung.

Zunachst sollen die folgenden Sitze abge-
leitet werden:

1. Die Tragheitskraft der Mechanik 148t
sich darstellen als der resultierende Widerstand
gegen Translationsbeschleunigungen einer Masse
relativ zu allen iibrigen Massen des Raumes.

2. Die Schwere oder Newtonsche Gravi-
tation 1aBt sich darstellen als Tragheitskraft der
Rotation der Massenteilchen gegeneinander.

Der erste Satz ist im Prinzip schon in mei-
nem fritheren Aufsatz enthalten. Dort war die
kinetische Energie eines abgeschlossenen Systems
von 2 Massenpunkten, m; und #m, im Ab-
stande 7, T =m m,72f(r) gesetzt. Jedoch sah
ich damals keinen Grund, f(#) nicht einer Kon-

i B H. ReiBner, Uber die Relativitit der Beschleu-
nigungen in der Mechanik. Diese Zeitschr, 15, 371 bis
375, 1914.

stanten gleich zu setzen, und nahm fiir die Gra-
vitation eine besondere Kraftefunktion an.

Hier soll nun aber fiir die Funktion f(7)
des gegenseitigen Abstandes eine solche ein-
gesetzt werden, dal es keiner Kriftefunktion
fir die Gravitation bedarf.

Der Fortschritt moge also zunidchst darin
bestehen, Tragheit und Grayitation allein aus
der kinetischen Energie abzuleiten.

Es werde fiir ein System von Massen die
kinetische Energie gesetzt:

L 2' 22 ,—1
T:: sl 1T, (1)

wo 7, der Abstand der Punkte s und { mit
gewissen Massenkonstanten g, und g, und 7, die
Anderungsgeschwindigkeit dieses Abstandes. Die
Frage, wie diese Abstande und Geschwindig-
keiten zu messen sind, soll als vorliaufig un-
erheblich auBer acht bleiben.

Die Lagrangeschen Gleichungen liefern
dann die Krifte zwischen den Massenpunkten:

ad/oT 0
Iyx _ <' T s T .
i dt 67’:,> 67’:/(7‘)
Mit
L
67"“ = VstV  Usls,
a0l etk e
Cﬁ (r}’"« ) 34 (751‘7.\‘{ 1 VsV s 2) Usllt
nr e
b Vst o St ;
wird:

(2)

Es werde nun das ganze System auf ein
beliebiges rechtwinkliges Koordinatensystem be-
zogen, so daB man setzen kann:

Vo= [(% — %)% + (9: — ¥ 4 (2. — 2],

Voo =153 [(%: — %) (%s — %) + (Vs — V) (¥s—99)
+ (Zs R Z/) (ZS ,é'{)],

— 2 (#e— %) O ¥(9.— 9

+ (2, — 21) (s — 2)] — 757 oy

Ferner werde die Kraft in der Richtung
einer Achse, z. B. der X-Achse, als Summe der
Projektionen der radialen Krifte ermittelt zu:

X[ZEZXY\\-/(X'S—,Y[)T;I

A grel G R o,
— uy 2 s (\1/5,73, v % R 3) (e — )i 4(8)

1
- S 72 ,—2
IXX[:.lly‘llt(y_y[?’A_, —:}’_‘./7’“ >

\

For=13"[(%s

LaBt man den Anfangspunkt des Koordi-
natensystems mit dem Punkte # nach Ort und
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Geschwindigkeit, jedoch nicht nach Beschleu- |

nigung zusammenfallen, d. h. setzt man
X, X Vs, Y5 % und Z;=o,
so kann man schreiben:
Pog = (— Xy, — Veys — Z4%;) 7’;1 Gt '7"2,-

Hierbei bedeute #° die Gegenbeschleunigung
des Punktes s gegen den Anfangspunkt des

Koordinatensystems.

Damit wird die X-Komponente der Kraft

ahnlich wie in meinem fritheren Aufsatz:

X g g
Xy=— X, E‘u;xm

st st

= —3__ 5 —3
— Vet D ey 17— F e S x.2,75° (4)

R L 2 ;/“3\

2 STt /

) 50 ,—2
+ s 2/1: Xs < Vst Vs

Die Newtonsche Grundgleichung Masse
mal Beschleunigung gleich Kraft gilt dann, wenn

man setzt:
N 25— 2,—3
s Ausxslrxl ek 1 UsY ¥ s
Uy
e ey —08 SLh = e
= s D225 — : Suerzt=m,

»—3 - —3
E/l&xdy:ﬂ’s,« =2‘u:x:,zs,rd

5 y»—38
S

AuBerdem muB man die letzte Summe der
rechten Seite der Gl (4) entweder gleich Null
setzen und damit dazu benutzen, die Bewegung

des Koordinatensystems festzulegen oder sie als
duBere Kraft, z. B. als Gravitationskraft auf-
fassen oder diese Summe teils fiir den einen,
teils fiir den anderen Zweck ausnutzen.

In diesen verschiedenen Méoglichkeiten liegt
die Aquivalenz der Mechanik fiir Trigheits-
krifte und die tibrigen Naturkrifte,

Wiirde man die Aussagen der Gl. (5) nicht
machen wollen, so wiirde statt der Newton-
schen Skalartheorie der Trigheit mit dem Skalar
Masse eine zunichst dreidimensionale Tensor-
theorie der Trigheit mit den in GL (5) ange-
gebenen 6 Komponenten eines symmetrischen
Tensors entstehen. Es ist bekannt, daB die
verallgemeinerte Einstein-GroBmannsche Re-
lativitéitstheorie, die freilich einen viel allge-
meineren Ausgangspunkt hat, ebenfalls zu dieser
Auffassung neigt.

Zu beachten ist ferner, daB die Masse

Ut

my="—"Zur;"

eines Punktes auch in einer Skalartheorie keine ’

Weltkonstante sein kann, vielmehr eine Funk-
tion des Ortes ist. Bei denjenigen Kriften aller-
dings, die ebenfalls proportional der Masse sich
herausstellen, wird diese Verinderlichkeit nicht
I Erscheinung treten. Auch diese Verinder-

x

|
|

J
|
\
|
!
|

lichkeit ist allen beschleunigungsrelativen Theo-
| rien gemeinsam.!)
’ Dall andererseits die klassische Mechanik
mit der Masse als konstanter SkalargréBe so
’ gute Dienste leistet, muB3 wohl als Anzeichen dafiir
aufgefaBt werden, daB wir uns in einem Teil
des Weltraumes mit geniigend symmetrischer
" Massenverteilung befinden, falls es sich nicht
etwa herausstellen sollte, daB uns der tensorielle
und verianderliche Charakter der tragen Masse
zufolge der verinderlichen Eigenschaften unse-
rer MeBinstrumente als skalarer und unver-
anderlicher erscheint. Da jedoch die verall-
gemeinerte Relativititstheorie unseren MeB-
instrumenten die Méglichkeit, eine Kriimmung
der Lichtstrahlen und . eine Verschiebung der

| Spektrallinien im Schwerefeld festzustellen, zu-

billigt, scheint mir die zweite Auslegung weniger
wahrscheinlich. Es wire auch nach GL. (4) die
Frage aufzuwerfen, ob sich nicht Anzeichen
dafiir finden, daB die Tragheitskrafte in der
Ebene der MilchstraBe groBer sind, als senk-

| recht zu derselben.

(s) |

| der Gl (4) als Gravitationswirkung auffassen
| darf, soll nun im einzelnen nachgewiesen werden.

DaB man in der Tat die letste Summe

Das letzte Glied des Kraftausdruckes (4) be-

| deutet eine Kraft in der Verbindungslinie zweier

Massenpunkte vom Betrage:

_— (%5,7;1 — % if,r;g>. (2)

Es soll hiernach berechnet werden, welcher Art
eine solche Kraft ist, wenn sich zwei Rotations-
korper, die jeder um ihre Symmetrieachse ro-
tieren, in einer Entfernung, die groB ist gegen
die Abmessungen der Korper, gegeniiberstehen.

Ein Massenelement du hat die nach seiner

9

! . : v
Rotationsachse gerichtete Beschleunigung — , wo
a

v die Umfangsgeschwindigkeit und a der Radius
der Rotation.

Die in der kiirzesten Entfernung beider, zu-
nichst parallel angenommener Rotationsachsen

liegende Beschleunigungskomponente ist dann
2
U

— cos ¢ (siehe Fig.) und es wird das Glied:
a 3
£ 22 cos @
Wil e R R R
a (7 + acos )

—_

Gty G \c

v/

I) In der Nordstr6mschen Theorie z. B. wird

u
Masse m = (konst. — E T) gesetzt,

die
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Integriert man iiber ein Ringelement, so er-
hilt man:

/dlu%/'r—l = 0%y

wo » eine Liniendichte von g lings der be-
trachteten Kreislinie.

T
" dgcos @
7+ acosg’

(62)

Fiir kleine — wird dieses Integral:
7

u

vyrxa  v3:dy

72

B}

27
2
vy
T[drpcosgp(r—acosqu):- =
7 pr
0

= vsin g und:

Entsprechend wird #
[ d @ sin® @

jd‘u;"?'r_i’:vzva 4 >
(r + a cos @)
0

27
v2va e
. fd(p51n3(p(}’—ac05(p)2
0

v -

(6b)

7
v’vax vidyu
Wiy R
Die Anziehung des ganzen Korpers mit dem
Index s auf einen anderen nicht rotierenden
Koérper vom Massenkoeffizienten w; im Ab-
stande 7 wird also:

PA 2 2
w* I Ri2m .
e —s f aPdps=—plts~—5
272 2 75
wo £k, der Trigheitsradius, @, die Winkel-

geschwindigkeit des Korpers s.
Rotieren beide Massen, so addieren sich

bei kleinem — die Wirkungen und es wird die
r

Anziehungskraft:
I k2ol kRwp
K=—uu; —— . (za)
Z 7.2
Die Form dieses Kraftgesetzes entspricht

schon der Newtonschen Gravitation, jedoch
ist die Anziehung eines so rotierenden Teilchens
nicht gleichmiBig nach allen Richtungen, son-
dern am groBten senkrecht zur Rotationsachse
und gleich Null in dieser Achse.

Steht namlich die Verbindungslinie (der Ab-
stand 7) der Mittelpunkte zweier Massen unter
dem Winkel @ zur Drehachse eines der Teil-
chen, so ist die Komponente der Zentripetal-

beschleunigung lings dieser Verbindungslinie
2

v ; : ,
cos @ siny und der Abstand dieses Teilchens

a

von dem Mittelpunkt der anderen Masse

y " : a 5 :
7 + acos psiny fiir kleines —- Unter dieser
7

Voraussetzung multiplizieren sich die Integrale
(6a), (6b) mit sin®y, und wenn man die An-

ziehungskraft fiir den Fall, daB die Drehachse
mit dem Abstande 7 den Winkel v bildet mit
K, bezeichnet, erhalt man

Ky= K sin®.

Den Aufbau der gravitierenden Materie
moge man sich nun so vorstellen, daB in jedem
Volumenelement rotierende Teilchen ohne Be-
vorzugung einer Rotationsachse verteilt seien.

Dann 14Bt sich an dem Beispiel von 3 ro-
tierenden Teilchen mit zueinander senkrechten
Rotationsachsen einsehen, daB die resultierende
Kraft auf eine andere in einer vorgeschriebenen
Richtung liegende Masse
kR2ws? 4+ k2w

K,=——uu— 372 (2b)
betragen mubB.

Hierbei sei z. B. unter g, die Summe aller
Massenkoeffizienten der einzelnen rotierenden
Teilchen der betrachteten Masse verstanden.
Die betrachtete Masse habe jedoch, trotzdem
sie eine vielleicht groBe Zahl unregelmiBig ver-
teilter rotierender Teilchen enthilt, eine gegen
die Abstinde nach den Teilchen der zweiten
Masse des Index ¢ hin sehr kleine Ausdehnung,
so daB unter 7, der Abstand der Schwer-
punkte der beiden Massen verstanden werden
darf.

Soll sich in (2b) das
ziehungsgesetz ausdriicken,

ziehung gelten:

Newtonsche An-
so mub die Be-

X sl g
3
wo y die Gravitationskonstante.
Also wird nach Gleichung (5):
R2m? -+ RPwpA
X
wo @, und ¢, die Potentialfunktionen 2';

72

72

¥

an

den Orten der betrachteten Massen bedeuten.

Die Gravitationskonstante 7y konnte aller-
dings nun nur in einem Raum von solcher Aus-
dehnung eine universelle Konstante sein, wo
die in der Masseneinheit enthaltene Rotations-

2 2

enetgie ¢ — — und die Potentialfunktion ¢
2

geniigend wenig verinderlich sind. Dann wiirde

sein:

R

Yy=—12 (/)2 . (

Andererseits wurde oben in Ubereinstimmung
mit Herrn Einsteins Theorie der Gravitation
gefunden, daB auch der fiir die Trigheit mab-
gebende Massenwert abhingig sein muf} von
der Lage zu allen iibrigen Massen, genauer der
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Potentialfunktion Lk Es war deswegen nur
7 (=]

zu erwarten, dal} auch die Gravitationskonstante
von jenem Werte abhingen wiirde.

Es ist nun zweckmiBig, wegen des Uber-
ganges zur Relativititstheorie die obigen Ergeb-
nisse auch mit Hilfe der kinetischen Energie T
des ganzen Systems darzustellen.

Der ganze Ansatz war ja ausgegangen von
der EnergiegroBe aller Massen des Raumes:

I 2 2 ]
22 ~—1
T: ? Uslls? 47y~

Der auf eine Masse u, beziigliche Teil, der
allein fiir die auf diese Masse wirkende Kraft
in Betracht kommt, ist:

sal - U
UsV ¥y~

Die fritheren Uberlegungen haben gezeigt,
daB man zufolge der Art der Massenverteilung
diese Energie im wesentlichen in einen Teil, der
nur von der Bewegung des betrachteten Punktes,
und einen Teil, der von der Bewegung aller
ibrigen Punkte allein herriihrt, zerlegen und

setzen kann:
2 I 20t —1
o q —f—jlu, UsTs ¥y ™

wo 70 die Anderungsgeschwindigkeiten der Ab-
stande von der mit ihrem Schwerpunkt in Ruhe
gedachten Masse s bedeuten.

Das erste Glied gibt den klassischen Aus-
druck fiir die kinetische Energie einer mit der

I
TIZ? ‘U,'

L e

T;

Vst

iy ;i 7
Geschw1nd1gkelt g bewegten Masse 7, — 1z E e
4

wieder, das zweite Glied muB nach den frithe-
ren Uberlegungen dann die Gravitationsenergie
bedeuten, wenn in den # nur die Rotationen der
Massen Us, jedoch nicht ijhre Translationen be-
riicksichtigt werden.

Die Auswertung dieses zweiten Gliedes ist
in Wirklichkeit schon durch den frither gefun-
denen Kraftausdruck (2b) geleistet. Dieser be-
dingt eine Energie vom Betrage

s !

2 ’
— Wk m? E :
3 7

Wwo die Energiedichte der Rotation aller Ele-

mentarteilchen bezogen auf die Masseneinheit als

gleich angenommen werden muB. Der voll-

stindige Energieausdruck lautet dann: |
s

: [
St N (02 + 4t @) (12

Aus diesem Ausdruck ergibt sich nun wieder-

um sowohl die Trigheitskraft als auch die |
Schwerkraft in der Form: !

d
dt
T

Schwerkraft K,= =

2L, ()

(%)
)
(4b)
Dieser Kraftausdruck wiirde mit dem New-
tonschen vollstindig iibereinstimmen, wenn
tberall dieselbe Proportionalitit zwischen Massen-

koeffizient # und Masse m bestinde. Dies ist
aber nur niherungsweise dort der Fall, wo die

Tragheitskraft K,—

-

2
= — Ry, —
e

ox

Potentialfunktion E, % sich gentigend allmih-

lich andert. Setzt man nimlich

.’11:171,17
)
wo
o Us
P = o
so erhilt man:
K= 6o 2 (317)
@D 0x\ Qr/
— me 1D Sim 1 S dg)
B o i ®- 7 (0%

? u o
Wird — E — al B und — al
rd nun ¢ .- als groB un 35 s
klein vorausgesetzt, so ergibt sich in erster

Naherung
02

My —

m
>
ot

k22
[N \?
i)
also die Gravitationskonstante wie oben:
k2 w?

<

Es folgt also auch hier wie in allen neueren
Gravitationstheorien eine nur naherungsweise
Giiltigkeit der Laplace-Poissonschen Potential-
gleichung der Gravitation, wobei allerdings
diese Naherung als HuBerst genaue heraus-
kommen mubB.

Im {iibrigen erfiillen die Kraftformen (4a)
und (4b) die Bedingung, daB in allen Punkten
des Gravitationsfeldes alle Massen dieselbe Be-
schleunigung erfahren (gleich schnell fallen), so-
bald dte Rotationsenergie der Masseneinheit
nicht von der stofflichen Natur, sondern nur
von dem Orte abhingt.

5

&

‘)

¥/

7 (7)

Die Einordnung der bis hierher erzielten Er-
gebnisse in eine Feldtheorie, welche auch die
zeitlichen Anderungen umfaBt und dem Rela-
lativititspostulat geniigt, ist erwiinscht.
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Nun ist nach Anmerkung auf S. 181 jeden-
falls sicher, daB dieser Anschluf3 nicht an die
Nordstromsche Skalartheorie der Gravitation
erfolgen kann, da dort die trige Masse bei
Annaherung anderer Massen abnimmt, wihrend
sie bei unserem Ansatz dhnlich wie in der
Einsteinschen Theorie wichst. Es scheint auch
der Charakter des obigen Ansatzes mehr auf
eine Tensortheorie hinzudeuten.

Jedoch ist mir ein volliger AnschluB an
das verallgemeinerte Relativititsschema von
Einstein-GroBmann bisher nicht gegliickt.
DaB dies schwierig ist, scheint mir folgenden
Grund zu haben.

Die vollstindigen Differentialgleichungen des
Gravitationsfeldes und der vollstindige kova-
riante Spannungsenergietensor der Massenstro-
mung in Einsteins letzten Veroffentlichungen,
welche zusammen die Verallgemeinerung der
Laplace-Poissonschen Potentialgleichung bil-
den, stellen ein mathematisch sehr schwieriges
Problem dar. Einstein selbst gewinnt aller-
dings aus ihnen trotzdem schon wertvolle Er-
gebnisse, indem er das Linienelement der bis-
herigen Relativititstheorie als erste Niherung
ansetzt und aus dem Energietensor dieser ersten
Naherung vermittelst der nun linear werdenden
Differentialgleichungen des Feldes eine klein
vorausgesetzte Korrektur findet.

Durch dieses Verfahren verzichtet er bewuBter
Weise auf einen Einblick in den mechanischen
Aufbau der Ausgangswerte des Linienelements, die
er als gegeben annimmt, trotzdem sie aus den
Differentialgleichungen folgen miiBten. Grade
diese physikalische Vorstellung liefern aber,
wenn auch nur fiir das Gleichgewicht des Feldes
die hier gegebenen Ansitze, die also vielleicht
erst nach einer anderen Integrationsmethode der
allgemeinen Einsteinschen Feldgleichungen sich
in diese einordnen lassen. Ich glaube an einen
solchen Anschlull deswegen, weil meine Ergeb-
nisse in bezug auf die Abhingigkeit zwischen
Tragheit, Potentialfunktion und Lichtgeschwindig-
keit ganz ahnlich gebaut sind, wie die Ein-
steinschen und das Einsteinsche Schema von
sehr groBer Reichweite sein muB.

Immerhin moéchte ich in Folgendem einen
skalaren Ansatz einer Feldtheorie mitteilen, der
in geniigend kleinen Gebieten der friiheren Re-
lativititstheorie gehorcht und die obigen Ergeb-
nisse als erste Naherungen enthilt. Ich setze
das Linienelement

1

[ P r”‘ s 5 —]2
ds— LT 2 p2 2
s=dt |Co %“4/6 »? +q e

wo ¢, eine iibrigens sehr groBe Konstante ist,
g die Geschwindigkeit des betrachteten Punktes

bedeutet und ¢ der vierdimensionalen Poten-
tialgleichung
Co=—4axo

gehorcht, wobei ¢, der Wert von ¢ am Koordi-
natenanfangspunkt. ¢ sei hierbei die Ruhmassen-
dichte von ¢ und AR?®? ist wieder als Konstante
zu behandeln.

Die Lagrangesche Funktion habe den Wert:

Sad I D
H—=—u 3 Co 77 = MaCo gy
Es wird dann die Tragheitskraft:
= a (oH)
B =

1
ARy 1~~‘2]

= — X okt e k? 2 2 :

¥ {m I (p0|4 w? 4 g [’)

Die Gravitationskraft nimmt den Wert an:

0H udg g%\
=_—=" "(2Rw% 4 |
K O P <5 2N
1
@if ra s 2‘|>_'2
1 — — 4 RPw?
< Po | ¢ J

Die fritheren Krifte der Gl (4a) und (4b)
stellen offenbar die erste Naherung dieser letzteren
Kraftausdriicke dar, welche eine Erweiterung
des Newtonschen Kraftgesetzes fiir den Fall
| endlicher Geschwindigkeit bedeuten.

Nimmt man ferner, wie in der Relativitats-
theorie an, daf das Linienelement ds = o eine
Geschwindigkeit g gleich der Lichtgeschwindig-
keit ergibt, so wird diese

e
270 22
c—Vic, 73 4 k? 2.

Sie nimmt also bei Annaherung an Massen
ab. ¢, ist die Lichtgeschwindigkeit am An-
fangspunkte, wenn keine Massenrotation be-
stande.

Auch die Energie eines Massenpunktes er-
gibt sich als Verallgemeinerung des friitheren
Energieausdruckes (1a) durch den iblichen
Ansatz:

| DR
e T A ey

= mc? (1 == gﬂ ( 7+ 4 kz.mz))

Auch der Energiewert vermindert sich also bel
Anndherung an andere Massen.

|

Die obigen ans dem vierdimensionalen Linien-
| element abgeleiteten Ausdrucke gehen im An-
fangspunkt des Koordinatensystems und bei Ab-
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Weise von der Verteilung aller iibrigen Massen

Ausdriicke der Einstein-Minkowskischen Re- | abhingig.

lativitatstheorie tber.

Die bei der Rotation von Massen unter Vor-
aussetzung der Relativitait der Tragheit ent-
stehenden, gravitationsartigen Krafte fithren sich
darauf zuriick, daB bei jeder Rotation die An-
ziehung erzeugenden Zentripetalbeschleunigungen
niher zu allen anderen Massen liegen als die
AbstoBung erzeugenden. Die oft gestellte Frage
nach der Mdoglichkeit negativer Massen verneint
sich damit ganz von selbst.

Diese Wirkungsweise der Rotation ist nun
aber auch anderen Bewegungsformen eigen,
wenn man statt der Krafte und Beschleunigungen
ihre zeitlichen Mittelwerte zuldBt. Jede An-
sammlung von sich irgendwie durcheinander
bewegenden Massenteilchen mul eine gravi-
tationsartige Anziehung auf andere Massen aus-
tiben, sofern die oben angesetzte Relativitit der
Trigheit richtig ist. Fir die Ausrechnung
wirde es auf die zeitlichen und riumlichen
Mittelwerte von w727~ ankommen und die
mittlere Wirkung wiirde der einer Rotation von
gewissem Betrage aquivalent sein.

SchlieBlich kann man nun noch die Frage
aufwerfen, ob nicht die allgemeine Rotation aller
Massenteilchen vom Standpunkt der Relativitit
der Trigheit ebenfalls gedeutet werden kann.
In der Tat muB auch jedes Drehmoment der
Trigheitskrifte durch entsprechende Drehmo-
mente an allen anderen Massen aufgenommen
werden, also miissen auch jeder Anderung einer
WinkelbewegungsgréBe alle anderen Winkel-
bewegungsgroBen folgen. Es muB dadurch also
ein gewisser Ausgleich der Rotationen aller
Massen vor sich gehen.

Zusammenfassung.

Ein friherer Ansatz fiir die beschleunigungs-
relative Form der kinetischen Energie von Massen
wird dergestalt vereinfacht, daB die Gravitations-
wirkung ohne Hinzuziehung einer potentiellen
Energie als reine Tragheitswirkung erscheint.

Hierzu ist allerdings die Hypothese not-
wendig, daB alle ein Gravitationsfeld erregenden
Massen Rotation besitzen und die Rotations-
aghscn unregelmafig gerichtet und verteilt sind.
Die Gravitationskraft wird dann als gegenseitige
Zentripetalkraft dargestellt.

Die trige Masse wird bei diesem Ansatz
hur ndherungsweise als Skalar gefunden, und
zwar dann, wenn man eine geniligende Symmetrie
der Massenverteilung des Weltraums annimmt.
. Sowohl trige als auch anziehende Masse
sind in ihrer GroéBe in gleicher ganz bestimmter
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Wihrend der erste Ansatz eines Elementar-
gesetzes zweier Massen einer Tensortheorie der
Tragheit und Gravitation zu entsprechen scheint,
wird unter Voraussetzung einer gewissen Sym-
metrie der Massenverteilung und Massenrotation
unseres Raumes eine Skalartheorie der Gravi-
tation aufgestellt und es werden die wesent-
lichen, vorher als Fernwirkungen aufgefaliten Er-
gebnisse mit Hilfe einer Lagrangeschen Funk-
tion des Feldes wiedergefunden. Es folgt aus
ihr eine VergroBerung der tragen Masse und
eine Verminderung der Lichtgeschwindigkeit
und der Energie bei Annidherung von Massen.

(Eingegangen 1. April 1914.)

Uber Loschvorginge in Funkenstrecken.

(Mitteilung aus dem Institut fiir angewandte
Elektrizitait der Universitit Gottingen.)

Von H. Masing und H. Wiesinger.

Einleitung.

Die grundlegenden Versuche von H. Th.
Simon?) iiber den Wechselstromlichtbogen haben
wohl zuerst die Auffassung mit Entschiedenheit
zur Geltung gebracht, daB eine einzelne Funken-
entladung als ein Wechselstromlichtbogen hoher
Frequenz aufzufassen ist. Durch diesen Wechsel-
stromlichtbogen hindurch schwingt die in dem
Entladungskreise befindliche Energie gedampft
aus. Entsprechend hat die dynamische Charakte-
ristik beim Funken und Wechselstromlichtbogen
im wesentlichen die gleichen Eigenschaften, was
von Roschansky?) experimentell bestitigtwurde.
Fiir unsere Arbeit ist von entscheidender Bedeu-
tung das von H. Th. Simon erhaltene und spater
von seinen Schiilern mehrfach bestitigte Resultat,
daB mit abnehmender Stromamplitude der dyna-
mische Ziindgipfel der Charakteristik zu héheren
Spannungswerten hinauf wichst, und zwar um so
mehr, je geringer die Lichtbogenhysteresis ist
(s. Fig. 1). Wir wollen die zu diesem Gipfel ge-
horige Spannung ,,dynamische Ziindspannung‘‘
nennen.

Bei geniigend klein werdender Stromampli-
tude wachst die dynamische Ziindspannung so
in die Hohe, daB schlieBlich die zur Verfiigung
stehende Elektrodenspannung die Ziindspitze

1) H. Th. Simon, diese Zeitschr. 6, 297, 190s.
2) D. Roschansky, diese Zeitschr. 9, 627, 1908.




