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Abstract

[Translator’s note]: This is an English translation of a paper by Hans Reissner originally published in 1915 (the original German
version is attached at the end of the document). Hans Reissner was an accomplished aeronautical engineer and theoretical physicist;
the first person in history to design a functional fully metal aircraft (the Reissner canard), and also the first to derive the Reissner-
Nordström metric for a spherically symmetric, charged, stationary mass in general relativity. This paper, which is a follow-up from a
previous paper Reissner published in 1914, offers insight into a strategy for implementing Mach’s principle, however it goes further
than what Mach suggested, since Reissner shows that according to his theory, we can interpret gravity as arising necessarily as a
consequence of the relativisation of inertia. In other words, Reissner offers a hypothetical explanation for the existence of gravity.
Historically, Reissner appears to be the first person to have explicitly raised this possibility. Although the paper was formerly
partially translated by Julian Barbour, I am providing a full translation here to help highlight the unique aspects of this second paper
that were lacking in the first.

Classical mechanics introduces inertia and gravity as inde-
pendent phenomena and sees inertia as a resistance to acceler-
ation in relation to absolute space. The fact that both of these
forces are proportional to the same mass appears in classical
mechanics as a coincidental relationship between these phe-
nomena. Nonetheless, the dimensions of the gravitational con-
stant, which have not yet been physically interpreted, and the
strange Gaussian system of measurements which involves the
elimination of mass on account of this relationship between
gravity and inertia, give us food for thought.

The relationship of acceleration to an absolute space could
be assumed as long as a resting light ether could be used as
a reference system. As early as 1883, Mach’s mechanics de-
clared that the notion that there could be a privileged reference
system independent of material processes is absurd, and gave
hints that the conception of an acceleration against space might
be an intermediary to one compared to all other masses.1

In particular, Mach addressed the argument of absolute me-
chanics which holds that absolute centripetal accelerations can
be identified by the presence of centrifugal forces, and pointed
out that these centrifugal forces are only observed in systems of
very small extent that are rotating against the fixed stars.

But recently Mr. Abraham and Mr. Mie have argued against
Einstein’s demand for the covariance of the physical laws with
respect to arbitrary transformations of the reference system on
the basis that such a covariance would contradict the observed
inertial forces.2

1E. Mach, Die Mechanik in ihrer Entwickung, 6th ed., 1908, p. 250—253
2Discussion note by G. Mie on Einstein’s lecture, this journal. 14, 1264,

1913; Abraham, Die neue Machanik, Scienta Jan. 1914, Sur le probléme de la
relativité, Juli 1914.

Only recently, after I had illustrated the possibility of
acceleration-relative mechanics using a concrete case, has Mr.
Abraham withdrawn his fundamental objection.

In the essay in question, I stated and for the first time quan-
titatively formulated the idea that the relativity of acceleration
can only be implemented if the centrifugal forces of a rotating
body correspond to centripetal forces of all other masses so that
there is no dynamical difference between a body that rotates
with respect to all other masses and the converse situation in
which [180] all other masses rotate with respect to the body.3

However, my knowledge of the equality of inertial and grav-
itational masses had not been included as necessary, since my
approach involved separate kinetic and potential energy func-
tions.

Mr. Einstein’s equivalence hypothesis which asserts the me-
chanical and optical identity of an acceleration field with a field
of constant gravity seems to imply the deeper meaning that
gravity is also a resistance to acceleration. Of course, this idea
could not be applied directly to inhomogeneous gravitational
fields. The basic assumption of Hertz’s principles of mechanics
should also be remembered here, according to which all forces
should be viewed as inertial forces. However, Hertzian me-
chanics is completely removed from the idea of the relativity of
inertia. It is therefore all the more remarkable that it is precisely
this idea that makes it possible to fulfill Hertz’s ideal require-
ment of representing gravity as an inertial force.

In this direction, the appearance of the above-mentioned
counterparts of the centrifugal force led me to attempt to make

3H. Reissner, Uber die Relativitat der Beschleunigungen in der Mechanik.
This journal. 15, 371 bis 375, 1914.
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these forces responsible for gravity. If I am successful, grav-
ity would be understood as a direct and necessary consequence
of the relativity of acceleration, the identity of the gravitational
and inertial masses would be shown to be self-evident and the
gravitational field would not only be equivalent to an acceler-
ated space, as Einstein proposes, but gravity itself would be
identified as a resistance to relative acceleration.

First, the following postulates should be derived:

1. The inertial force of mechanics can be represented as the
resistance to translational accelerations of a mass relative
to all other masses in space.

2. Weight, or Newtonian gravity can be represented as the
inertial force of the relative rotation of masses.

The first postulate is in principle already contained in my
earlier essay. There the kinetic energy of a closed system of
2 mass points, m1 and m2 at a distance r, T = m1m2ṙ2 f (r) was
set. However, at that time I saw no reason not to equate f (r) to a
constant and assumed a separate force function for gravitation.

Here, however, the function f (r) of the mutual distance
should be used in such a way that no additional force function
is required for gravitation.

Progress should therefore initially consist in deriving inertia
and gravitation solely from kinetic energy.

The kinetic energy for a system of two masses is given by:

T =
1
2

∑
µsµt ṙ2

str
−1
st (1)

where rst is the distance between the points s and t with mass
constants µs and µt, and ṙst is the rate of change of this dis-
tance. The question of how these distances and speeds are to be
measured should be ignored for the time being.

The Lagrangian equations then provide the forces between
the mass points:

Kst =
d
dt

(
∂T
∂ṙst

)
−

∂

∂rst
(T ) .

With

∂T
∂ṙst
= ṙstr−1

st µsµt,

d
dt

(
∂T
∂ṙst

)
=

(
r̈str−1

st − ṙ2
str
−2
st

)
µsµt,

∂T
∂rst
= −ṙstrst−1 −

1
2

ṙ2
str

2
st

becomes:

Kst = µsµt

(
r̈str−1

st −
1
2

ṙ2
str
−2
st

)
(2)

The entire system is now referred to an arbitrary Cartesian
coordinate system, so that one can set:

rst =
[
(xs − xt)2 + (ys − yt)2 + (zs − zt)2

]1/2

ṙst,= r−1
st

[
(xs − xt)(ẋs − ẋt) + (ys − yt)(ẏs − ẏt)+

(zs − zt)(zs − żt),

r̈st = r−1
st

[
(xs − xt)(ẍs − ẍt) + (ys − yt)(ÿs − ÿt)

+(zs − zt)(zs − z̈t) − r−1
st ṙ2

st.

Furthermore, let the force be in the direction of an axis, e.g.
the X-axis, determined as the sum of the projections of the ra-
dial forces to:

Xt =
∑

Kst(xs − xt)r−1
st

=
∑

µst

(
r̈str−1

st −
1
2

ṙ2
str
−2
st

)
(xs − xt)r−1

st (3)

If one lets the origin of the coordinate system correspond to
the position and velocity of the point t, [181] but not its accel-
eration, meaning that we choose

xt, ẋt, yt, ẏt, zt, and żt = 0

then we can write:

ẍst = (−ẍt xs − ÿtys − z̈tzs)r−1
st + r̈0

st

Here r̈0
st is the counter-acceleration of the point s against the

origin of the coordinate system.
This makes the X-component of the force similar to my ear-

lier paper:

Xt = −ẍtµt

∑
µsx2

sr−3
st − ÿtµt

∑
µsxsysr−3

st

− z̈tµt

∑
µsxszsr−3

st

+ µt

∑
µsxs

(
r̈0

str
−1
st −

1
2

ṙ2
str
−3
st

)
. (4)

Newton’s basic equation ‘mass times acceleration equals
force’ applies if we set:

µt

∑
µsx2

str
−3
st = µt

∑
µsy2

str
−3
st = µt

∑
µsz2

str
−3
st

=
µt

3

∑
µsr−1

st = mt∑
µsxstystr−3

st =
∑

µsxstzstr−3
st =

∑
µsystzstr−3

st = 0 (5)

In addition, one must calculate the last sum of the right-hand
side of eq. (4), either by setting it equal to zero and thus using
it to determine the movement of the coordinate system, or by
using it as an external force, for instance by considering it as a
gravitational force or by using this sum partly for one purpose
and partly for another.

The equivalence of mechanics for inertial forces and the
other forces of nature lies in these various possibilities.

If one were to use the statements of eq. (5), then instead
of Newton’s scalar theory of inertia with the scalar mass, an
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initially three-dimensional tensor theory of inertia with the val-
ues in eq. (5) specifying 6 components of a symmetrical ten-
sor would arise. It is known that the generalized Einstein-
Grossmann theory of relativity, which of course has a much
more general starting point, also tends towards this approach.

It should also be noted that the mass

mt =
µt

3

∑
µsr−1

st

of a point cannot be a global constant even in a scalar theory, but
is rather a function of position. However, for those forces that
also turn out to be proportional to the mass, this variability will
not be apparent. This variability is common to all acceleration-
relative theories.4

On the other hand, the fact that classical mechanics does a
good job with mass as a constant scalar quantity must probably
be taken as an indication that we are in a region of space with
a sufficiently symmetrical mass distribution, unless it turns out
that in a more general tensorial theory the changing character of
the inertial mass appears as unchanging due to the covariance
of our measuring instruments. However, since the generalized
theory of relativity allows for the possibility of detecting a cur-
vature of our measurement of light rays and a shift of spectral
lines in a gravitational field, the second interpretation seems
less likely to me. It is also on account of eq. (4) that we may
raise the question of whether there might be signs that inertial
forces in the plane of the Milky Way are greater than those per-
pendicular to it.

The fact that one can actually show that the final sum in eq.
(4) can be understood as a gravitational effect, should now be
proven in detail. The last term of the force expression (4) de-
notes a force along the line connecting the two mass points of
magnitude:

Kst = µsµt

(
r̈str−1

st −
1
2

ṙ2
str
−2
st

)
(2)

We should now calculate the form that this force takes when
two revolving bodies, each rotating about their axis of symme-
try, face each other at a distance that is large compared to the
dimensions of the bodies.

A mass element dµ is accelerated away from its axis of rota-
tion by v2

a , where v is the peripheral speed and a is the radius of
rotation.

The acceleration component located at the shortest distance
between both axes of rotation, initially assumed to be parallel,
is then v2

a cos ϕ (see figure) and the term becomes:

r̈r−1 =
v2 cos ϕ

a(r + a cos ϕ)
[182]
Integrating over a ring element, we get:∫

dµr̈r−1 = v2ν

∫ 2π

0

dϕ cos ϕ
r + a cos ϕ

(6a)

4[In Nordstrom’s theory for example the mass is given by: m =

µ
(
Const −

∑ µ
r

)
.

Figure 1: [Translator’s note]: Diagram taken from the original paper.

where ν is a line density of µ along the specified sought circle.
For small a/r this integral becomes:

v2ν

r2

∫ 2π

0
dϕ cos ϕ(r − a cos ϕ) =

v2νπa
r2 =

v2dµ
r2

Accordingly, ṙ = v sin ϕ and

∫
dµṙ2r−2 = v2νa

∫ 2π

0

dϕ sin2 ϕ

(r + a cos ϕ)2

∼
v2νa
r4

∫ 2π

0
dϕ sin2 ϕ(r − a cos ϕ)2

=
v2νaπ

r2 =
v2dµ

r2 (6b)

The attraction of the whole body with the index s onto an-
other non-rotating body with the mass coefficient µt at a dis-
tance r becomes:

µt
ω2

2r2

∫
a2dµs =

1
2
µtµs

k2
sω

2
s

r2
st

where ks is the radius of gyration and ωs the angular velocity of
the body s.

If both masses rotate, the effects add up at small a
r so that the

force of attraction becomes:

K =
1
2
µsµt

k2
sω

2
s + k2

t ω
2
t

r2 (2a)

The form of this force law already corresponds to Newton’s
gravity, but the attraction of a particle rotating in this way is not
uniform in all directions but greatest perpendicular to the axis
of rotation and equal to zero in this axis.

If the connecting line (the distance r) of the centers of two
masses is at an angle ψ to the axis of rotation of one of the
particles, then the component of the centripetal acceleration is
along these connecting lines v2

a cos ϕ sinψ and the distance of
this particle from the center of the other mass r + a cos ϕ sinψ
for small a

r . According to this assumption, we multiply the
integrals (6a), (6b) by sin2 ψ, and if we take the attractive force
for the case that the axis of rotation forms the angle ψ with the
distance r denoted by Kψ, we obtain

Kψ = K sin2 ψ

One could now consider the structure of gravitating matter in
such a way that rotating particles are distributed in every vol-
ume element without any axis of rotation being present.
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Then, using the example of 3 rotating particles with mutually
perpendicular axes of rotation, it can be seen that the resulting
force on another in a prescribed direction must amount to:

Kr =
2
3
µsµt

k2
sω

2
s + k2

t ω
2
t

2r2
st

. (2b)

Here, for example, within µs is the sum of all mass coeffi-
cients of the individual rotating particles of the mass (of index
s) under consideration. However, the mass under consideration,
although it contains perhaps a large number of irregularly dis-
tributed rotating particles, has a very small extent compared to
the distance to the particles of the second mass of index t, so
that rst can be understood as the distance between the centers of
gravity of the two masses.

If Newton’s law of attraction is to be expressed in (2b), the
following relationship must hold:

γ
msmt

r2 =
1
3
µsµt

r2 (k2
sω

2
s + k2

t ω
2
t )

where γ is the gravitational constant.
So according to equation (5):

γ = 3
k2

sω
2
s + k2

t ω
2
t

ϕsϕt

where ϕs, and ϕt, are the potential functions
∑ µ

r at the locations
of the masses under consideration.

However, the gravitational constant γ could only be a uni-
versal constant in a space of such an extent where the varia-
tion of the rotational constant contained in the mass unit en-
ergy e = k2ω2

2 and the potential function ϕ are sufficiently small.
Then it would be given by:

γ = 12
e
ϕ2 (7)

On the other hand, it was found above, in accordance with
Mr. Einstein’s theory of gravitation, that the mass value that
determines the inertia must also depend on the position in re-
lation to all other masses, or more precisely the [183] potential
function

∑ µ
r . It is therefore to be expected that the gravitational

constant should also depend on this value.
Because of the transition to the theory of relativity, it is now

useful to represent the above results using the kinetic energy T
of the entire system.

This approach is based on the total energy of all the masses
in space:

T =
1
2

∑∑
µsµt ṙ2

str
−1
st .

The part relating to a single mass µt, excluding any self-
interaction, is:

T1 =
1
2
µt

∑
µsṙ2

str
−1
st .

Previous considerations have shown that, depending on the
nature of the mass distribution, this energy can essentially be
broken down into a part that comes only from the movement of

the point under consideration and a part that comes solely from
the movement of all other points:

Tt =
1
2
µt

3

∑ µs

rst
q2 +

1
2
µt

∑
µsṙ02

st r−1
st ,

where ṙ0
st are the mean rates of change of the distances from the

mass µt considered to be at rest with its center of gravity.
The first term gives the classic expression for the kinetic en-

ergy of a mass mt = µt
∑ µs

r moving at speed q. Furthermore,
according to earlier considerations, the second term must cor-
respond to the gravitational energy if in ṙ only the rotations of
the masses µs, but not their translations, are considered.

The evaluation of this second term has actually already been
accomplished by the expletive (2b) found earlier. This requires
an energy of the amount

2
3
µtk2ω2

∑ µs

r
,

where the energy density of the rotation of all elementary par-
ticles relative to the unit mass must be assumed to be the same.
The complete energy expression is then:

Tt =
1
2
µt

3

∑ µs

r

(
q2

t + 4k2ω2
)

(1a)

From this expression we get both the inertial force and the
force of gravity in the form:

Inertial force: Kt =
d
dt

(
∂T
∂ẋ

)
=

d
dt

(mẋ), (4a)

Gravitational force: Kg =
∂T
∂x
=

2
3

k2ω2µt
∂

∂x

∑ µs

r
. (4b)

This expletive would perfectly match the Newtonian if the
same proportionality between mass coefficient µ and mass m
existed everywhere. However, this is only approximately the
case if the potential function

∑ µ
r changes gradually enough.

Using that

µt = mt
3
ϕ
,

where
ϕ =

∑ µs

r
,

we get:

Kg = 6 k2ω2 mt

ϕ

∂

∂x

(∑ ms

ϕr

)
= mt6

k2ω2

ϕ

[
1
ϕ

∂

∂x

∑ ms

r
−

1
ϕ2

∑ ms

r
∂ϕ

∂x

]
.

If ϕ =
∑ µ

r is now assumed to be large and ∂ϕ
∂x to be small, a

first-order approximation results in

Kg = 6
k2ω2(∑ µ

r

)2 mt
∂
∑ m

r

∂x
,
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so the gravitational constant as above is:

γ = 6
k2ω2(∑ µ

r

)2 . (7)

Here too, as in all newer theories of gravity, the Laplace-
Poisson potential equation of gravity is only approximately
valid, although this approximation must turn out to be ex-
tremely accurate.

Furthermore, the forms of force (4a) and (4b) fulfill the con-
dition that at all points of the gravitational field all masses ex-
perience the same acceleration (fall at the same speed), as soon
as the rotational energy of the mass unit is not related to its
material composition, but only depends on the location.

It is desirable to classify the results achieved so far into a field
theory that also includes the changes over time and satisfies the
postulate of relativity. [184]

Now, according to the note on page 181, it is certain that
a connection cannot be made to Nordström’s scalar theory of
gravity, since there the inertial mass decreases as other masses
approach, whereas in our theory it increases similarly to Ein-
stein’s theory. It also seems that the character of the above ap-
proach points more towards a tensor theory.

However, I have not yet been able to fully connect with
Einstein-Großmann’s generalized relativity scheme. It seems
to me that this is difficult for the following reason.

The complete differential equations of the gravitational field
and the complete covariant stress-energy tensor of the mass-
flow in Einstein’s last publications, which together form the
generalization of the Laplace-Poisson potential equation, rep-
resent a mathematically very difficult problem. However, Ein-
stein himself gains from them nevertheless, he still obtained
valuable results by using the line element of the previous the-
ory of relativity as a first approximation and finding a correction
assumed to be small from the energy tensor of this first approx-
imation using the now linear differential equations of the field.

Through this procedure he consciously foregoes any insight
into the mechanical structure of the initial values of the line ele-
ment, which he takes as given, even though they would have to
follow from the differential equations. However, it is precisely
this physical idea that is provided by the approach given here,
even if only for the equilibrium of the field, which can perhaps
only be integrated into Einstein’s general field equations after a
different integration method. I believe in such a connection be-
cause my results regarding the dependency between inertia, the
potential function and the speed of light are built in a very sim-
ilar way to Einstein’s, and Einstein’s scheme must be of wide
applicability.

In what follows, I will provide a scalar approach to a field
theory, which is obeyed in sufficiently small regions of the for-
mer recent theory and contains the above results as the first ap-
proximation. I set the line element

ds = dt
[
c2

0 −
ϕ

ϕ0

(
4k2ω2 + q2

)]1/2

,

where c0 is a very large constant, q is the speed of the point un-

der consideration, and ϕ is the four-dimensional potential obey-
ing the equation

□ ϕ = −4πQ,

and ϕ0 is the value of ϕ at the coordinate starting point. Let Q
be the frame mass density of µ and k2ω2 should again be treated
as a constant.

The Lagrangian function has the value:

H = −µ
ϕ0

3
c0

ds
dt
= m0c0

ds
dt
.

The inertial force then becomes:

Kt =
d
dt

(
∂H
∂ẋ

)
= µ

d
dt

[
mẋ

(
1 −

ϕ

ϕ0
{4k2ω2 + q2}

)]1/2

,

The gravitational force takes the value:

Kg =
∂H
∂x
=
µ

3
∂ϕ

∂x

(
2k2ω2 +

q2

2

) (
1 −

ϕ

ϕ0
{4k2ω2 + q2}

)1/2

,

The previous forces of eq. (4a) and (4b) obviously represent
the first approximation of these latter force expressions, which
mean an extension of Newton’s force law for the case of finite
velocity.

If one further assumes, as in the theory of relativity, that the
line element ds = 0 results in a speed q equal to the speed of
light, then this becomes

c =
√

c2
0
ϕ0

ϕ
− 4k2ω2

Which therefore decreases as one approaches a mass. c0 is
the speed of light at the starting point if there is no mass rota-
tion.

The energy of a mass point is also obtained as a generaliza-
tion of the earlier energy expression (1a) using the usual ansatz

E =
∂H
∂ẋ

ẋ +
∂H
∂ẏ

ẏ +
∂H
∂ż

ż − H = mc2
(
1 −

ϕ

ϕ0

(
4k2ω2 + q2

))1/2

The energy value also decreases as it approaches other masses.
The above expressions derived from the four-dimensional

line element becomes the well-known expressions of the
Einstein-Minkowski theory of relativity with the starting point
of the coordinate system in the absence of mass rotation in the
known distribution of all other masses. [185]

The gravitational forces that arise when masses rotate under
the assumption of the relativity of inertia are due to the fact
that in every rotation the centripetal accelerations that generate
attraction are closer to all other masses than those that produce
repulsion. The often asked question about the possibility of
negative masses is therefore completely negated.

This mode of operation of rotation is also inherent in other
forms of movement if one allows their temporal average val-
ues instead of the forces and accelerations. Every collection of
mass particles that somehow move through one another must
exert a gravitational attraction on other masses, as long as the
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relativity of inertia assumed above is correct. The calculation
would depend on the temporal and spatial averages of µṙ2r−1

and the average effect would be equivalent to that of a rotation
of a certain amount.

Finally, one can now raise the question of whether the general
rotation of all mass particles can also be interpreted from the
perspective of the relativity of inertia. In fact, every torque of
the inertial forces must be absorbed by corresponding torques
of all other masses, so that every change in the angular motion
of one body must be followed by a corresponding change in the
angular motion of all other bodies. There must therefore be a
certain balancing of the rotations of all masses.

Summary

An earlier approach to the acceleration-relative form of the
kinetic energy of masses is simplified in such a way that the
gravitational effect appears as a pure inertial effect without the
addition of potential energy.

However, this requires the hypothesis that all masses that ex-
cite a gravitational field have rotation and that the axes of rota-
tion are irregularly directed and distributed. The gravitational
force is then represented as a mutual centripetal force.

With this approach, the inert mass is only found approxi-
mately as a scalar, if one assumes sufficient symmetry in the
mass distribution of space. The size of both inertial and attrac-
tive masses depends in a very specific way on the distribution
of matter.

While the first approach of an elementary law of two masses
seems to correspond to a tensor theory of inertia and gravity. A
scalar theory of gravity is established, assuming a certain sym-
metry of the mass distribution and mass rotation of our space,
and the essential results, previously understood as long-distance
effects, are found again with the help of a Lagrangian function
of the field. This results in an increase in the inertial mass and
a reduction in the speed of light and energy when masses ap-
proach.

(Received April 1, 1914.)
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