

On the Possibility of Deriving Gravity as the Direct Consequence of the Relativity of Inertia

Hans Reissner(author)¹, Jonathan Fay(translator)^a

^a*University of Bristol, Cotham House, Bristol, BS6 6JL, United Kingdom*

Abstract

[Translator's note]: This is an English translation of a paper by Hans Reissner originally published in 1915 (the original German version is attached at the end of the document). Hans Reissner was an accomplished aeronautical engineer and theoretical physicist; the first person in history to design a functional fully metal aircraft (the *Reissner canard*), and also the first to derive the *Reissner-Nordström metric* for a spherically symmetric, charged, stationary mass in general relativity. This paper, which is a follow-up from a previous paper Reissner published in 1914, offers insight into a strategy for implementing Mach's principle, however it goes further than what Mach suggested, since Reissner shows that according to his theory, we can interpret gravity as arising *necessarily* as a consequence of the relativisation of inertia. In other words, Reissner offers a hypothetical explanation for the existence of gravity. Historically, Reissner appears to be the first person to have explicitly raised this possibility. Although the paper was formerly partially translated by Julian Barbour, I am providing a full translation here to help highlight the unique aspects of this second paper that were lacking in the first.

Classical mechanics introduces inertia and gravity as independent phenomena and sees inertia as a resistance to acceleration in relation to absolute space. The fact that both of these forces are proportional to the same mass appears in classical mechanics as a coincidental relationship between these phenomena. Nonetheless, the dimensions of the gravitational constant, which have not yet been physically interpreted, and the strange Gaussian system of measurements which involves the elimination of mass on account of this relationship between gravity and inertia, give us food for thought.

The relationship of acceleration to an absolute space could be assumed as long as a resting light ether could be used as a reference system. As early as 1883, Mach's mechanics declared that the notion that there could be a privileged reference system independent of material processes is absurd, and gave hints that the conception of an acceleration against space might be an intermediary to one compared to all other masses.¹

In particular, Mach addressed the argument of absolute mechanics which holds that absolute centripetal accelerations can be identified by the presence of centrifugal forces, and pointed out that these centrifugal forces are only observed in systems of very small extent that are rotating against the fixed stars.

But recently Mr. Abraham and Mr. Mie have argued against Einstein's demand for the covariance of the physical laws with respect to arbitrary transformations of the reference system on the basis that such a covariance would contradict the observed inertial forces.²

Only recently, after I had illustrated the possibility of acceleration-relative mechanics using a concrete case, has Mr. Abraham withdrawn his fundamental objection.

In the essay in question, I stated and for the first time quantitatively formulated the idea that the relativity of acceleration can only be implemented if the centrifugal forces of a rotating body correspond to centripetal forces of all other masses so that there is no dynamical difference between a body that rotates with respect to all other masses and the converse situation in which [180] all other masses rotate with respect to the body.³

However, my knowledge of the equality of inertial and gravitational masses had not been included as necessary, since my approach involved separate kinetic and potential energy functions.

Mr. Einstein's equivalence hypothesis which asserts the mechanical and optical identity of an acceleration field with a field of constant gravity seems to imply the deeper meaning that gravity is also a resistance to acceleration. Of course, this idea could not be applied directly to inhomogeneous gravitational fields. The basic assumption of Hertz's principles of mechanics should also be remembered here, according to which all forces should be viewed as inertial forces. However, Hertzian mechanics is completely removed from the idea of the relativity of inertia. It is therefore all the more remarkable that it is precisely this idea that makes it possible to fulfill Hertz's ideal requirement of representing gravity as an inertial force.

In this direction, the appearance of the above-mentioned counterparts of the centrifugal force led me to attempt to make

¹E. Mach, *Die Mechanik in ihrer Entwicklung*, 6th ed., 1908, p. 250—253

²Discussion note by G. Mie on Einstein's lecture, this journal. 14, 1264, 1913; Abraham, *Die neue Mechanik*, Scientia Jan. 1914, *Sur le problème de la relativité*, Juli 1914.

³H. Reissner, *Über die Relativität der Beschleunigungen in der Mechanik*. This journal. 15, 371 bis 375, 1914.

these forces responsible for gravity. If I am successful, gravity would be understood as a direct and necessary consequence of the relativity of acceleration, the identity of the gravitational and inertial masses would be shown to be self-evident and the gravitational field would not only be equivalent to an accelerated space, as Einstein proposes, but gravity itself would be identified as a resistance to relative acceleration.

First, the following postulates should be derived:

1. The inertial force of mechanics can be represented as the resistance to translational accelerations of a mass relative to all other masses in space.
2. Weight, or Newtonian gravity can be represented as the inertial force of the relative rotation of masses.

The first postulate is in principle already contained in my earlier essay. There the kinetic energy of a closed system of 2 mass points, m_1 and m_2 at a distance r , $T = m_1 m_2 r^2 f(r)$ was set. However, at that time I saw no reason not to equate $f(r)$ to a constant and assumed a separate force function for gravitation.

Here, however, the function $f(r)$ of the mutual distance should be used in such a way that no additional force function is required for gravitation.

Progress should therefore initially consist in deriving inertia and gravitation solely from kinetic energy.

The kinetic energy for a system of two masses is given by:

$$T = \frac{1}{2} \sum \mu_s \mu_t \dot{r}_{st}^2 r_{st}^{-1} \quad (1)$$

where r_{st} is the distance between the points s and t with mass constants μ_s and μ_t , and \dot{r}_{st} is the rate of change of this distance. The question of how these distances and speeds are to be measured should be ignored for the time being.

The Lagrangian equations then provide the forces between the mass points:

$$K_{st} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{r}_{st}} \right) - \frac{\partial}{\partial r_{st}} (T).$$

With

$$\begin{aligned} \frac{\partial T}{\partial \dot{r}_{st}} &= \dot{r}_{st} r_{st}^{-1} \mu_s \mu_t, \\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{r}_{st}} \right) &= \left(\ddot{r}_{st} r_{st}^{-1} - \dot{r}_{st}^2 r_{st}^{-2} \right) \mu_s \mu_t, \\ \frac{\partial T}{\partial r_{st}} &= -\dot{r}_{st} \mu_s \mu_t r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \end{aligned}$$

becomes:

$$K_{st} = \mu_s \mu_t \left(\ddot{r}_{st} r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \right) \quad (2)$$

The entire system is now referred to an arbitrary Cartesian coordinate system, so that one can set:

$$\begin{aligned} r_{st} &= \left[(x_s - x_t)^2 + (y_s - y_t)^2 + (z_s - z_t)^2 \right]^{1/2} \\ \dot{r}_{st} &= r_{st}^{-1} [(x_s - x_t)(\dot{x}_s - \dot{x}_t) + (y_s - y_t)(\dot{y}_s - \dot{y}_t) + (z_s - z_t)(\dot{z}_s - \dot{z}_t)], \\ \ddot{r}_{st} &= r_{st}^{-1} [(x_s - x_t)(\ddot{x}_s - \ddot{x}_t) + (y_s - y_t)(\ddot{y}_s - \ddot{y}_t) + (z_s - z_t)(\ddot{z}_s - \ddot{z}_t) - r_{st}^{-1} \dot{r}_{st}^2]. \end{aligned}$$

Furthermore, let the force be in the direction of an axis, e.g. the X -axis, determined as the sum of the projections of the radial forces to:

$$\begin{aligned} X_t &= \sum K_{st} (x_s - x_t) r_{st}^{-1} \\ &= \sum \mu_{st} \left(\ddot{r}_{st} r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \right) (x_s - x_t) r_{st}^{-1} \end{aligned} \quad (3)$$

If one lets the origin of the coordinate system correspond to the position and velocity of the point t , [181] but not its acceleration, meaning that we choose

$$x_t, \dot{x}_t, y_t, \dot{y}_t, z_t, \text{ and } \dot{z}_t = 0$$

then we can write:

$$\ddot{x}_{st} = (-\ddot{x}_t x_s - \ddot{y}_t y_s - \ddot{z}_t z_s) r_{st}^{-1} + \ddot{r}_{st}^0$$

Here \ddot{r}_{st}^0 is the counter-acceleration of the point s against the origin of the coordinate system.

This makes the X -component of the force similar to my earlier paper:

$$\begin{aligned} X_t &= -\ddot{x}_t \mu_t \sum \mu_s x_s^2 r_{st}^{-3} - \ddot{y}_t \mu_t \sum \mu_s x_s y_s r_{st}^{-3} \\ &\quad - \ddot{z}_t \mu_t \sum \mu_s x_s z_s r_{st}^{-3} \\ &\quad + \mu_t \sum \mu_s x_s \left(\ddot{r}_{st}^0 r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-3} \right). \end{aligned} \quad (4)$$

Newton's basic equation 'mass times acceleration equals force' applies if we set:

$$\begin{aligned} \mu_t \sum \mu_s x_{st}^2 r_{st}^{-3} &= \mu_t \sum \mu_s y_{st}^2 r_{st}^{-3} = \mu_t \sum \mu_s z_{st}^2 r_{st}^{-3} \\ &= \frac{\mu_t}{3} \sum \mu_s r_{st}^{-1} = m_t \\ \sum \mu_s x_{st} y_{st} r_{st}^{-3} &= \sum \mu_s x_{st} z_{st} r_{st}^{-3} = \sum \mu_s y_{st} z_{st} r_{st}^{-3} = 0 \end{aligned} \quad (5)$$

In addition, one must calculate the last sum of the right-hand side of eq. (4), either by setting it equal to zero and thus using it to determine the movement of the coordinate system, or by using it as an external force, for instance by considering it as a gravitational force or by using this sum partly for one purpose and partly for another.

The equivalence of mechanics for inertial forces and the other forces of nature lies in these various possibilities.

If one were to use the statements of eq. (5), then instead of Newton's scalar theory of inertia with the scalar mass, an

initially three-dimensional tensor theory of inertia with the values in eq. (5) specifying 6 components of a symmetrical tensor would arise. It is known that the generalized Einstein-Grossmann theory of relativity, which of course has a much more general starting point, also tends towards this approach.

It should also be noted that the mass

$$m_t = \frac{\mu_t}{3} \sum \mu_s r_{st}^{-1}$$

of a point cannot be a global constant even in a scalar theory, but is rather a function of position. However, for those forces that also turn out to be proportional to the mass, this variability will not be apparent. This variability is common to all acceleration-relative theories.⁴

On the other hand, the fact that classical mechanics does a good job with mass as a constant scalar quantity must probably be taken as an indication that we are in a region of space with a sufficiently symmetrical mass distribution, unless it turns out that in a more general tensorial theory the changing character of the inertial mass appears as unchanging due to the covariance of our measuring instruments. However, since the generalized theory of relativity allows for the possibility of detecting a curvature of our measurement of light rays and a shift of spectral lines in a gravitational field, the second interpretation seems less likely to me. It is also on account of eq. (4) that we may raise the question of whether there might be signs that inertial forces in the plane of the Milky Way are greater than those perpendicular to it.

The fact that one can actually show that the final sum in eq. (4) can be understood as a gravitational effect, should now be proven in detail. The last term of the force expression (4) denotes a force along the line connecting the two mass points of magnitude:

$$K_{st} = \mu_s \mu_t \left(\ddot{r}_{st} r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \right) \quad (2)$$

We should now calculate the form that this force takes when two revolving bodies, each rotating about their axis of symmetry, face each other at a distance that is large compared to the dimensions of the bodies.

A mass element $d\mu$ is accelerated away from its axis of rotation by $\frac{v^2}{a}$, where v is the peripheral speed and a is the radius of rotation.

The acceleration component located at the shortest distance between both axes of rotation, initially assumed to be parallel, is then $\frac{v^2}{a} \cos \phi$ (see figure) and the term becomes:

$$\ddot{r} r^{-1} = \frac{v^2 \cos \phi}{a(r + a \cos \phi)}$$

[182]

Integrating over a ring element, we get:

$$\int d\mu \ddot{r} r^{-1} = v^2 \nu \int_0^{2\pi} \frac{d\phi \cos \phi}{r + a \cos \phi} \quad (6a)$$

⁴[In Nordstrom's theory for example the mass is given by: $m = \mu (Const - \sum \frac{\mu}{r})$.

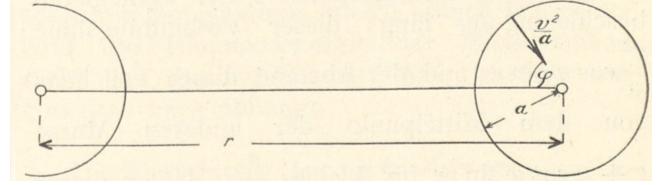


Figure 1: [Translator's note]: Diagram taken from the original paper.

where ν is a line density of μ along the specified sought circle. For small a/r this integral becomes:

$$\frac{v^2 \nu}{r^2} \int_0^{2\pi} d\phi \cos \phi (r - a \cos \phi) = \frac{v^2 \nu \pi a}{r^2} = \frac{v^2 d\mu}{r^2}$$

Accordingly, $\dot{r} = v \sin \phi$ and

$$\begin{aligned} \int d\mu \dot{r}^2 r^{-2} &= v^2 \nu a \int_0^{2\pi} \frac{d\phi \sin^2 \phi}{(r + a \cos \phi)^2} \\ &\sim \frac{v^2 \nu a}{r^4} \int_0^{2\pi} d\phi \sin^2 \phi (r - a \cos \phi)^2 \\ &= \frac{v^2 \nu a \pi}{r^2} = \frac{v^2 d\mu}{r^2} \end{aligned} \quad (6b)$$

The attraction of the whole body with the index s onto another non-rotating body with the mass coefficient μ_t at a distance r becomes:

$$\mu_t \frac{\omega^2}{2r^2} \int a^2 d\mu_s = \frac{1}{2} \mu_t \mu_s \frac{k_s^2 \omega_s^2}{r_{st}^2}$$

where k_s is the radius of gyration and ω_s the angular velocity of the body s .

If both masses rotate, the effects add up at small $\frac{a}{r}$ so that the force of attraction becomes:

$$K = \frac{1}{2} \mu_s \mu_t \frac{k_s^2 \omega_s^2 + k_t^2 \omega_t^2}{r^2} \quad (2a)$$

The form of this force law already corresponds to Newton's gravity, but the attraction of a particle rotating in this way is not uniform in all directions but greatest perpendicular to the axis of rotation and equal to zero in this axis.

If the connecting line (the distance r) of the centers of two masses is at an angle ψ to the axis of rotation of one of the particles, then the component of the centripetal acceleration is along these connecting lines $\frac{v^2}{a} \cos \phi \sin \psi$ and the distance of this particle from the center of the other mass $r + a \cos \phi \sin \psi$ for small $\frac{a}{r}$. According to this assumption, we multiply the integrals (6a), (6b) by $\sin^2 \psi$, and if we take the attractive force for the case that the axis of rotation forms the angle ψ with the distance r denoted by K_ψ , we obtain

$$K_\psi = K \sin^2 \psi$$

One could now consider the structure of gravitating matter in such a way that rotating particles are distributed in every volume element without any axis of rotation being present.

Then, using the example of 3 rotating particles with mutually perpendicular axes of rotation, it can be seen that the resulting force on another in a prescribed direction must amount to:

$$K_r = \frac{2}{3} \mu_s \mu_t \frac{k_s^2 \omega_s^2 + k_t^2 \omega_t^2}{2r_{st}^2}. \quad (2b)$$

Here, for example, within μ_s is the sum of all mass coefficients of the individual rotating particles of the mass (of index s) under consideration. However, the mass under consideration, although it contains perhaps a large number of irregularly distributed rotating particles, has a very small extent compared to the distance to the particles of the second mass of index t , so that r_{st} can be understood as the distance between the centers of gravity of the two masses.

If Newton's law of attraction is to be expressed in (2b), the following relationship must hold:

$$\gamma \frac{m_s m_t}{r^2} = \frac{1}{3} \frac{\mu_s \mu_t}{r^2} (k_s^2 \omega_s^2 + k_t^2 \omega_t^2)$$

where γ is the gravitational constant.

So according to equation (5):

$$\gamma = 3 \frac{k_s^2 \omega_s^2 + k_t^2 \omega_t^2}{\phi_s \phi_t}$$

where ϕ_s , and ϕ_t , are the potential functions $\sum \frac{\mu}{r}$ at the locations of the masses under consideration.

However, the gravitational constant γ could only be a universal constant in a space of such an extent where the variation of the rotational constant contained in the mass unit energy $e = \frac{k^2 \omega^2}{2}$ and the potential function ϕ are sufficiently small. Then it would be given by:

$$\gamma = 12 \frac{e}{\phi^2} \quad (7)$$

On the other hand, it was found above, in accordance with Mr. Einstein's theory of gravitation, that the mass value that determines the inertia must also depend on the position in relation to all other masses, or more precisely the [183] potential function $\sum \frac{\mu}{r}$. It is therefore to be expected that the gravitational constant should also depend on this value.

Because of the transition to the theory of relativity, it is now useful to represent the above results using the kinetic energy T of the entire system.

This approach is based on the total energy of all the masses in space:

$$T = \frac{1}{2} \sum \sum \mu_s \mu_t \dot{r}_{st}^2 r_{st}^{-1}.$$

The part relating to a single mass μ_t , excluding any self-interaction, is:

$$T_1 = \frac{1}{2} \mu_t \sum \mu_s \dot{r}_{st}^2 r_{st}^{-1}.$$

Previous considerations have shown that, depending on the nature of the mass distribution, this energy can essentially be broken down into a part that comes only from the movement of

the point under consideration and a part that comes solely from the movement of all other points:

$$T_t = \frac{1}{2} \frac{\mu_t}{3} \sum \frac{\mu_s}{r_{st}} q^2 + \frac{1}{2} \mu_t \sum \mu_s \dot{r}_{st}^2 r_{st}^{-1},$$

where \dot{r}_{st}^0 are the mean rates of change of the distances from the mass μ_t considered to be at rest with its center of gravity.

The first term gives the classic expression for the kinetic energy of a mass $m_t = \mu_t \sum \frac{\mu_s}{r}$ moving at speed q . Furthermore, according to earlier considerations, the second term must correspond to the gravitational energy if in \dot{r} only the rotations of the masses μ_s , but not their translations, are considered.

The evaluation of this second term has actually already been accomplished by the expletive (2b) found earlier. This requires an energy of the amount

$$\frac{2}{3} \mu_t k^2 \omega^2 \sum \frac{\mu_s}{r},$$

where the energy density of the rotation of all elementary particles relative to the unit mass must be assumed to be the same. The complete energy expression is then:

$$T_t = \frac{1}{2} \frac{\mu_t}{3} \sum \frac{\mu_s}{r} (q_t^2 + 4k^2 \omega^2) \quad (1a)$$

From this expression we get both the inertial force and the force of gravity in the form:

$$\text{Inertial force: } K_t = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) = \frac{d}{dt} (m_t \dot{x}), \quad (4a)$$

$$\text{Gravitational force: } K_g = \frac{\partial T}{\partial x} = \frac{2}{3} k^2 \omega^2 \mu_t \frac{\partial}{\partial x} \sum \frac{\mu_s}{r}. \quad (4b)$$

This expletive would perfectly match the Newtonian if the same proportionality between mass coefficient μ and mass m existed everywhere. However, this is only approximately the case if the potential function $\sum \frac{\mu}{r}$ changes gradually enough. Using that

$$\mu_t = m_t \frac{3}{\phi},$$

where

$$\phi = \sum \frac{\mu_s}{r},$$

we get:

$$\begin{aligned} K_g &= 6 k^2 \omega^2 \frac{m_t}{\phi} \frac{\partial}{\partial x} \left(\sum \frac{m_s}{\phi r} \right) \\ &= m_t 6 \frac{k^2 \omega^2}{\phi} \left[\frac{1}{\phi} \frac{\partial}{\partial x} \sum \frac{m_s}{r} - \frac{1}{\phi^2} \sum \frac{m_s}{r} \frac{\partial \phi}{\partial x} \right]. \end{aligned}$$

If $\phi = \sum \frac{\mu}{r}$ is now assumed to be large and $\frac{\partial \phi}{\partial x}$ to be small, a first-order approximation results in

$$K_g = 6 \frac{k^2 \omega^2}{(\sum \frac{\mu}{r})^2} m_t \frac{\partial \sum \frac{m}{r}}{\partial x},$$

so the gravitational constant as above is:

$$\gamma = 6 \frac{k^2 \omega^2}{\left(\sum \frac{\mu}{r}\right)^2}. \quad (7)$$

Here too, as in all newer theories of gravity, the Laplace-Poisson potential equation of gravity is only approximately valid, although this approximation must turn out to be extremely accurate.

Furthermore, the forms of force (4a) and (4b) fulfill the condition that at all points of the gravitational field all masses experience the same acceleration (fall at the same speed), as soon as the rotational energy of the mass unit is not related to its material composition, but only depends on the location.

It is desirable to classify the results achieved so far into a field theory that also includes the changes over time and satisfies the postulate of relativity. [184]

Now, according to the note on page 181, it is certain that a connection cannot be made to Nordström's scalar theory of gravity, since there the inertial mass decreases as other masses approach, whereas in our theory it increases similarly to Einstein's theory. It also seems that the character of the above approach points more towards a tensor theory.

However, I have not yet been able to fully connect with Einstein-Großmann's generalized relativity scheme. It seems to me that this is difficult for the following reason.

The complete differential equations of the gravitational field and the complete covariant stress-energy tensor of the mass-flow in Einstein's last publications, which together form the generalization of the Laplace-Poisson potential equation, represent a mathematically very difficult problem. However, Einstein himself gains from them nevertheless, he still obtained valuable results by using the line element of the previous theory of relativity as a first approximation and finding a correction assumed to be small from the energy tensor of this first approximation using the now linear differential equations of the field.

Through this procedure he consciously foregoes any insight into the mechanical structure of the initial values of the line element, which he takes as given, even though they would have to follow from the differential equations. However, it is precisely this physical idea that is provided by the approach given here, even if only for the equilibrium of the field, which can perhaps only be integrated into Einstein's general field equations after a different integration method. I believe in such a connection because my results regarding the dependency between inertia, the potential function and the speed of light are built in a very similar way to Einstein's, and Einstein's scheme must be of wide applicability.

In what follows, I will provide a scalar approach to a field theory, which is obeyed in sufficiently small regions of the former recent theory and contains the above results as the first approximation. I set the line element

$$ds = dt \left[c_0^2 - \frac{\phi}{\phi_0} (4k^2 \omega^2 + q^2) \right]^{1/2},$$

where c_0 is a very large constant, q is the speed of the point un-

der consideration, and ϕ is the four-dimensional potential obeying the equation

$$\square \phi = -4\pi Q,$$

and ϕ_0 is the value of ϕ at the coordinate starting point. Let Q be the frame mass density of μ and $k^2 \omega^2$ should again be treated as a constant.

The Lagrangian function has the value:

$$H = -\mu \frac{\phi_0}{3} c_0 \frac{ds}{dt} = m_0 c_0 \frac{ds}{dt}.$$

The inertial force then becomes:

$$K_t = \frac{d}{dt} \left(\frac{\partial H}{\partial \dot{x}} \right) = \mu \frac{d}{dt} \left[m \dot{x} \left(1 - \frac{\phi}{\phi_0} \{4k^2 \omega^2 + q^2\} \right) \right]^{1/2},$$

The gravitational force takes the value:

$$K_g = \frac{\partial H}{\partial x} = \mu \frac{\partial \phi}{\partial x} \left(2k^2 \omega^2 + \frac{q^2}{2} \right) \left(1 - \frac{\phi}{\phi_0} \{4k^2 \omega^2 + q^2\} \right)^{1/2},$$

The previous forces of eq. (4a) and (4b) obviously represent the first approximation of these latter force expressions, which mean an extension of Newton's force law for the case of finite velocity.

If one further assumes, as in the theory of relativity, that the line element $ds = 0$ results in a speed q equal to the speed of light, then this becomes

$$c = \sqrt{c_0^2 \frac{\phi_0}{\phi} - 4k^2 \omega^2}$$

Which therefore decreases as one approaches a mass. c_0 is the speed of light at the starting point if there is no mass rotation.

The energy of a mass point is also obtained as a generalization of the earlier energy expression (1a) using the usual ansatz

$$E = \frac{\partial H}{\partial \dot{x}} \dot{x} + \frac{\partial H}{\partial \dot{y}} \dot{y} + \frac{\partial H}{\partial \dot{z}} \dot{z} - H = mc^2 \left(1 - \frac{\phi}{\phi_0} (4k^2 \omega^2 + q^2) \right)^{1/2}$$

The energy value also decreases as it approaches other masses.

The above expressions derived from the four-dimensional line element becomes the well-known expressions of the Einstein-Minkowski theory of relativity with the starting point of the coordinate system in the absence of mass rotation in the known distribution of all other masses. [185]

The gravitational forces that arise when masses rotate under the assumption of the relativity of inertia are due to the fact that in every rotation the centripetal accelerations that generate attraction are closer to all other masses than those that produce repulsion. The often asked question about the possibility of negative masses is therefore completely negated.

This mode of operation of rotation is also inherent in other forms of movement if one allows their temporal average values instead of the forces and accelerations. Every collection of mass particles that somehow move through one another must exert a gravitational attraction on other masses, as long as the

relativity of inertia assumed above is correct. The calculation would depend on the temporal and spatial averages of $\mu r^2 r^{-1}$ and the average effect would be equivalent to that of a rotation of a certain amount.

Finally, one can now raise the question of whether the general rotation of all mass particles can also be interpreted from the perspective of the relativity of inertia. In fact, every torque of the inertial forces must be absorbed by corresponding torques of all other masses, so that every change in the angular motion of one body must be followed by a corresponding change in the angular motion of all other bodies. There must therefore be a certain balancing of the rotations of all masses.

Summary

An earlier approach to the acceleration-relative form of the kinetic energy of masses is simplified in such a way that the gravitational effect appears as a pure inertial effect without the addition of potential energy.

However, this requires the hypothesis that all masses that excite a gravitational field have rotation and that the axes of rotation are irregularly directed and distributed. The gravitational force is then represented as a mutual centripetal force.

With this approach, the inert mass is only found approximately as a scalar, if one assumes sufficient symmetry in the mass distribution of space. The size of both inertial and attractive masses depends in a very specific way on the distribution of matter.

While the first approach of an elementary law of two masses seems to correspond to a tensor theory of inertia and gravity. A scalar theory of gravity is established, assuming a certain symmetry of the mass distribution and mass rotation of our space, and the essential results, previously understood as long-distance effects, are found again with the help of a Lagrangian function of the field. This results in an increase in the inertial mass and a reduction in the speed of light and energy when masses approach.

(Received April 1, 1914.)

grüßung: „So also sieht eine Exzellenz aus“, flog der freundliche Schein des alten herzlichen Lachens verschönernd über die bedeutenden Züge. Die Unterhaltung konnte nur kurz sein, da ich bald die Ermüdung merkte. Neben ihm lagen Zeitungen, deren Durchsicht seine Hauptbeschäftigung war. Nach einigen Monaten, während weit draußen das Schlachtgewühl tobte und die Geschütze donnerten, ist er dann friedlich und sanft entschlafen.¹⁾

Die Aufbahrung erfolgte in der Universität; deren Rektor, der Theologieprofessor Mausbach, und Hittorfs dritter Nachfolger, Gerhard Schmidt, sprachen am Sarge und gedachten mit warmen Worten seiner unvergäng-

1) Hittorfs wertvoller wissenschaftlicher Bestand wurde seiner früher ausgesprochenen Absicht entsprechend von den Verwandten dem von ihm begründeten, und so lange geleiteten physikalischen Institut überwiesen.

lichen Verdienste um Hochschule und Wissenschaft.

An einer anderen Stelle¹⁾ habe ich diese in die Worte zusammenzufassen versucht: „Nicht in der Zahl der in Angriff genommenen Fragen liegt seine Größe, aber in dem scharfen Blick für die Auswahl bedeutungsvoller Probleme, in der gleichmäßigen Beherrschung der chemischen wie der physikalischen Seite, in der überaus sorgfältigen und zuverlässigen experimentellen Durchführung seiner Untersuchungen und in der eigenartigen Auffassung, die meist in schroffem Gegensatz zu den seinerzeit herrschenden Ansichten stehend, doch auf die Dauer durchdrang und sich behauptete. So hat er auf jedem der bearbeiteten Gebiete Bahnbrechendes geleistet.“

1) Vorwort zum Neudruck der Arbeit von Plücker und Hittorf „Über die Spektren der Gase und Dämpfe“, Leipzig 1904.

ORIGINALMITTEILUNGEN.

Über eine Möglichkeit die Gravitation als unmittelbare Folge der Relativität der Trägheit abzuleiten.

Von H. Reißner, Charlottenburg.

Die klassische Mechanik führt Trägheit und Schwere als voneinander unabhängige Erscheinungen ein und faßt die Trägheit als einen Widerstand gegen die auf einen absoluten Raum bezogene Beschleunigung auf. Daß beide Kräfte einer und derselben Größe nämlich der Masse proportional sind, erscheint in der klassischen Mechanik als eine zufällige Beziehung beider Erscheinungen, obgleich die bisher physikalisch noch nicht gedeutete Dimension der Gravitationskonstante bzw. das merkwürdige Gaußsche Maßsystem, das durch die Beziehung zwischen Gravitation und Trägheit eine Maßeinheit z. B. die Masse eliminiert, zu denken geben.

Die Beziehung der Beschleunigung auf einen absoluten Raum durfte solange angenommen werden als man einen ruhenden Lichtäther als Bezugssystem zugrunde legen konnte. Immerhin hat die Machsche Mechanik schon im Jahre 1883 die Vorstellung, daß es ein ausgezeichnetes von den materiellen Vorgängen unabhängiges Bezugssystem geben könnte, als absurd erklärt und Andeutungen über eine Auffassung der Beschleunigung gegen den Raum als einer mittleren gegen alle übrigen Massen gemacht^{1).}

1) E. Mach, Die Mechanik in ihrer Entwicklung, 6. Aufl., 1908, S. 250—253.

Insbesondere beschäftigte sich Mach schon mit dem Argument der Absolutmechaniker, daß man deswegen von absoluten Zentripetalbeschleunigungen sprechen dürfe, weil sie durch Zentrifugalkräfte erkennbar seien, und wies darauf hin, daß die Zentrifugalkräfte nur beobachtet werden bei rotierenden Systemen von einer gegen den Fixsternhimmel sehr kleinen Ausdehnung.

Aber noch kürzlich machten die Herren Abraham und Mie gegen die Einsteinsche Forderung der Kovarianz der physikalischen Gesetze gegenüber beliebigen Transformationen des Bezugssystems geltend, daß eine solche Kovarianz doch den beobachteten Trägheitskräften widerspräche^{1).}

Erst neuerdings, nachdem ich inzwischen die Möglichkeit einer beschleunigungsrelativen Mechanik an einem konkreten Fall veranschaulicht hatte, hat Herr Abraham seinen prinzipiellen Einwand zurückgezogen.

In dem betreffenden Aufsatz habe ich wohl zum ersten Male ausgesprochen und quantitativ formuliert, daß eine Beschleunigungsrelativität nur durchführbar ist, wenn den Zentrifugalkräften eines rotierenden Körpers Zentripetalkräfte aller übrigen Massen entsprechen, so zwar daß kein dynamischer Unterschied dazwischen ist, ob der Körper gegen alle übrigen Massen, oder

1) Diskussionsbemerkung G. Mie, zum Vortrage Einsteins, diese Zeitschr. 14, 1264, 1913; Abraham, Die neue Mechanik, Scientia Jan. 1914, Sur le problème de la relativité, Juli 1914.

alle übrigen Massen gegen den Körper rotieren¹⁾.

Jedoch hatten meine damaligen Ansätze die Gleichheit der trägen und der schweren Masse nicht als notwendig enthalten, da dort der Ansatz mit gesonderter kinetischer und potentieller Energie gemacht wurde.

Schon Herrn Einsteins Äquivalenzhypothese der mechanischen und optischen Identität eines Beschleunigungsfeldes mit einem Felde konstanter Schwere schien den tieferen Sinn zu bergen, daß auch die Schwere ein Widerstand gegen Beschleunigung sei. Freilich konnte man dort diese Vorstellung nicht durchführen, wenn man zu inhomogenen Gravitationsfeldern überging. Auch an die Grundannahme der Hertzschen Prinzipien der Mechanik möge hier erinnert werden, derzu folge alle Kräfte als Trägheitskräfte aufgefaßt werden sollten. Jedoch steht der Hertzschen Mechanik die Vorstellung der Relativität der Trägheit ganz fern. Umso bemerkenswerter ist es, daß grade diese Vorstellung es ermöglicht, die Hertzsche Idealforderung der Darstellung der Gravitation als Trägheitskraft zu erfüllen.

In dieser Richtung führte das Auftreten der oben erwähnten Gegenkräfte der Zentrifugalkraft mich nun zu dem Versuch, diese Kräfte für die allgemeine Gravitation verantwortlich zu machen. Gelang er, so war damit die Gravitation als unmittelbare und notwendige Folge der Beschleunigungsrelativität gedeutet, die Identität zwischen schwerer und träger Masse als selbstverständlich erwiesen und das Schwerefeld nicht bloß wie bei Einstein äquivalent einem beschleunigten Raum, sondern die Schwerkraft selbst identisch mit einem Widerstande gegen relative Beschleunigung.

Zunächst sollen die folgenden Sätze abgeleitet werden:

1. Die Trägheitskraft der Mechanik läßt sich darstellen als der resultierende Widerstand gegen Translationsbeschleunigungen einer Masse relativ zu allen übrigen Massen des Raumes.

2. Die Schwere oder Newtonsche Gravitation läßt sich darstellen als Trägheitskraft der Rotation der Massenteilchen gegeneinander.

Der erste Satz ist im Prinzip schon in meinem früheren Aufsatz enthalten. Dort war die kinetische Energie eines abgeschlossenen Systems von 2 Massenpunkten, m_1 und m_2 im Abstande r , $T = m_1 m_2 \dot{r}^2 f(r)$ gesetzt. Jedoch sah ich damals keinen Grund, $f(r)$ nicht einer Kon-

1) H. Reißner, Über die Relativität der Beschleunigungen in der Mechanik. Diese Zeitschr. 15, 371 bis 375, 1914.

stanten gleich zu setzen, und nahm für die Gravitation eine besondere Kräftefunktion an.

Hier soll nun aber für die Funktion $f(r)$ des gegenseitigen Abstandes eine solche eingesetzt werden, daß es keiner Kräftefunktion für die Gravitation bedarf.

Der Fortschritt möge also zunächst darin bestehen, Trägheit und Gravitation allein aus der kinetischen Energie abzuleiten.

Es werde für ein System von Massen die kinetische Energie gesetzt:

$$T = \frac{1}{2} \sum \mu_s \mu_t \dot{r}_{st}^2 r_{st}^{-1}, \quad (1)$$

wo r_{st} der Abstand der Punkte s und t mit gewissen Massenkonstanten μ_s und μ_t und \dot{r}_{st} die Änderungsgeschwindigkeit dieses Abstandes. Die Frage, wie diese Abstände und Geschwindigkeiten zu messen sind, soll als vorläufig unerheblich außer acht bleiben.

Die Lagrangeschen Gleichungen liefern dann die Kräfte zwischen den Massenpunkten:

$$K_{st} = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{r}_{st}} \right) - \frac{\partial}{\partial r_{st}} (T).$$

Mit

$$\begin{aligned} \frac{\partial T}{\partial \dot{r}_{st}} &= \dot{r}_{st} r_{st}^{-1} \mu_s \mu_t, \\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{r}_{st}} \right) &= (\ddot{r}_{st} r_{st}^{-1} - \dot{r}_{st}^2 r_{st}^{-2}) \mu_s \mu_t, \\ \frac{\partial T}{\partial r_{st}} &= -\dot{r}_{st}^2 r_{st}^{-2} \frac{\mu_s \mu_t}{2} \end{aligned}$$

wird:

$$K_{st} = \mu_s \mu_t \left(\dot{r}_{st} r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \right). \quad (2)$$

Es werde nun das ganze System auf ein beliebiges rechtwinkliges Koordinatensystem bezogen, so daß man setzen kann:

$$\begin{aligned} r_{st} &= [(x_s - x_t)^2 + (y_s - y_t)^2 + (z_s - z_t)^2]^{1/2}, \\ \dot{r}_{st} &= r_{st}^{-1} [(x_s - x_t)(\dot{x}_s - \dot{x}_t) + (y_s - y_t)(\dot{y}_s - \dot{y}_t) \\ &\quad + (z_s - z_t)(\dot{z}_s - \dot{z}_t)], \\ \ddot{r}_{st} &= r_{st}^{-1} [(x_s - x_t)(\ddot{x}_s - \ddot{x}_t) + (y_s - y_t)(\ddot{y}_s - \ddot{y}_t) \\ &\quad + (z_s - z_t)(\ddot{z}_s - \ddot{z}_t)] - r_{st}^{-1} \dot{r}_{st}^2. \end{aligned}$$

Ferner werde die Kraft in der Richtung einer Achse, z. B. der X -Achse, als Summe der Projektionen der radialen Kräfte ermittelt zu:

$$\begin{aligned} X_t &= \sum K_{st} (x_s - x_t) r_{st}^{-1} \\ &= \mu_t \sum \mu_s \left(\ddot{r}_{st} r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \right) (x_s - x_t) r_{st}^{-1}. \quad (3) \end{aligned}$$

Läßt man den Anfangspunkt des Koordinatensystems mit dem Punkte t nach Ort und

Geschwindigkeit, jedoch nicht nach Beschleunigung zusammenfallen, d. h. setzt man

$x_t, \dot{x}_t, y_t, \dot{y}_t, z_t$ und $\dot{z}_t = 0$,
so kann man schreiben:

$$\ddot{r}_{st} = (-\dot{x}_t x_s - \dot{y}_t y_s - \dot{z}_t z_s) r_{st}^{-1} + \ddot{r}_{st}^0.$$

Hierbei bedeutet \ddot{r}_{st}^0 die Gegenbeschleunigung des Punktes s gegen den Anfangspunkt des Koordinatensystems.

Damit wird die X -Komponente der Kraft ähnlich wie in meinem früheren Aufsatz:

$$\begin{aligned} X_t = & -\ddot{x}_t \mu_t \sum \mu_s x_s^2 r_{st}^{-3} \\ & - \ddot{y}_t \mu_t \sum \mu_s x_s y_s r_{st}^{-3} - \ddot{z}_t \mu_t \sum \mu_s x_s z_s r_{st}^{-3} \quad (4) \\ & + \mu_t \sum \mu_s x_s \left(\ddot{r}_{st}^0 r_{st}^{-2} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-3} \right). \end{aligned}$$

Die Newtonsche Grundgleichung Masse mal Beschleunigung gleich Kraft gilt dann, wenn man setzt:

$$\begin{aligned} \mu_t \sum \mu_s x_{st}^2 r_{st}^{-3} &= \mu_t \sum \mu_s y_{st}^2 r_{st}^{-3} \\ &= \mu_t \sum \mu_s z_{st}^2 r_{st}^{-3} = \frac{\mu_t}{3} \sum \mu_s r_{st}^{-1} = m_t \\ \sum \mu_s x_{st} y_{st} r_{st}^{-3} &= \sum \mu_s x_{st} z_{st} r_{st}^{-3} \\ &= \sum \mu_s y_{st} z_{st} r_{st}^{-3} = 0. \end{aligned} \quad (5)$$

Außerdem muß man die letzte Summe der rechten Seite der Gl. (4) entweder gleich Null setzen und damit dazu benutzen, die Bewegung des Koordinatensystems festzulegen oder sie als äußere Kraft, z. B. als Gravitationskraft aufzunehmen oder diese Summe teils für den einen, teils für den anderen Zweck ausnutzen.

In diesen verschiedenen Möglichkeiten liegt die Äquivalenz der Mechanik für Trägheitskräfte und die übrigen Naturkräfte.

Würde man die Aussagen der Gl. (5) nicht machen wollen, so würde statt der Newtonschen Skalartheorie der Trägheit mit dem Skalar Masse eine zunächst dreidimensionale Tensortheorie der Trägheit mit den in Gl. (5) angegebenen 6 Komponenten eines symmetrischen Tensors entstehen. Es ist bekannt, daß die verallgemeinerte Einstein-Großmannsche Relativitätstheorie, die freilich einen viel allgemeineren Ausgangspunkt hat, ebenfalls zu dieser Auffassung neigt.

Zu beachten ist ferner, daß die Masse

$$m_t = \frac{\mu_t}{3} \sum \mu_s r_{st}^{-1}$$

eines Punktes auch in einer Skalartheorie keine Weltkonstante sein kann, vielmehr eine Funktion des Ortes ist. Bei denjenigen Kräften allerdings, die ebenfalls proportional der Masse sich herausstellen, wird diese Veränderlichkeit nicht in Erscheinung treten. Auch diese Veränder-

lichkeit ist allen beschleunigungsrelativen Theorien gemeinsam.¹⁾

Daß andererseits die klassische Mechanik mit der Masse als konstanter Skalargröße so gute Dienste leistet, muß wohl als Anzeichen dafür aufgefaßt werden, daß wir uns in einem Teil des Weltraumes mit genügend symmetrischer Massenverteilung befinden, falls es sich nicht etwa herausstellen sollte, daß uns der tensorielle und veränderliche Charakter der tragen Masse zufolge der veränderlichen Eigenschaften unserer Meßinstrumente als skalarer und unveränderlicher erscheint. Da jedoch die verallgemeinerte Relativitätstheorie unseren Meßinstrumenten die Möglichkeit, eine Krümmung der Lichtstrahlen und eine Verschiebung der Spektrallinien im Schwerefeld festzustellen, zubilligt, scheint mir die zweite Auslegung weniger wahrscheinlich. Es wäre auch nach Gl. (4) die Frage aufzuwerfen, ob sich nicht Anzeichen dafür finden, daß die Trägheitskräfte in der Ebene der Milchstraße größer sind, als senkrecht zu derselben.

Daß man in der Tat die letzte Summe der Gl. (4) als Gravitationswirkung auffassen darf, soll nun im einzelnen nachgewiesen werden.

Das letzte Glied des Kraftausdruckes (4) bedeutet eine Kraft in der Verbindungsstrecke zweier Massenpunkte vom Betrage:

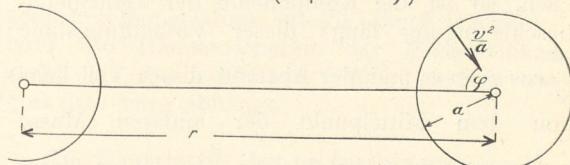
$$K_{st} = \mu_s \mu_t \left(\ddot{r}_{st} r_{st}^{-1} - \frac{1}{2} \dot{r}_{st}^2 r_{st}^{-2} \right). \quad (2)$$

Es soll hiernach berechnet werden, welcher Art eine solche Kraft ist, wenn sich zwei Rotationskörper, die jeder um ihre Symmetrieachse rotieren, in einer Entfernung, die groß ist gegen die Abmessungen der Körper, gegenüberstehen.

Ein Massenelement $d\mu$ hat die nach seiner Rotationsachse gerichtete Beschleunigung $\frac{v^2}{a}$, wo v die Umfangsgeschwindigkeit und a der Radius der Rotation.

Die in der kürzesten Entfernung beider, zunächst parallel angenommener Rotationsachsen liegende Beschleunigungskomponente ist dann $\frac{v^2}{a} \cos \varphi$ (siehe Fig.) und es wird das Glied:

$$\ddot{r} r^{-1} = \frac{v^2 \cos \varphi}{a(r + a \cos \varphi)}.$$



1) In der Nordströmschen Theorie z. B. wird die Masse $m = \mu \left(\text{konst.} - \sum \frac{\mu}{r} \right)$ gesetzt.

Integriert man über ein Ringelement, so erhält man:

$$\int d\mu \dot{r} r^{-1} = v^2 \nu \int_0^{2\pi} \frac{d\varphi \cos \varphi}{r + a \cos \varphi}, \quad (6a)$$

wo ν eine Liniendichte von μ längs der betrachteten Kreislinie.

Für kleine $\frac{a}{r}$ wird dieses Integral:

$$\frac{v^2 \nu}{r^2} \int_0^{2\pi} d\varphi \cos \varphi (r - a \cos \varphi) = \frac{v^2 \nu \pi a}{r^2} = \frac{v^2 d\mu}{r^2}.$$

Entsprechend wird $\dot{r} = v \sin \varphi$ und:

$$\begin{aligned} \int d\mu \dot{r}^2 r^{-2} &= v^2 \nu a \int_0^{2\pi} \frac{d\varphi \sin^2 \varphi}{(r + a \cos \varphi)^2} \\ &\sim \frac{v^2 \nu a}{r^4} \int_0^{2\pi} d\varphi \sin^2 \varphi (r - a \cos \varphi)^2 \quad (6b) \\ &= \frac{v^2 \nu a \pi}{r^2} = \frac{v^2 d\mu}{r^2}. \end{aligned}$$

Die Anziehung des ganzen Körpers mit dem Index s auf einen anderen nicht rotierenden Körper vom Massenkoeffizienten μ_t im Abstande r wird also:

$$\mu_t \frac{\omega^2}{2r^2} \int a^2 d\mu_s = \frac{1}{2} \mu_t \mu_s \frac{k_s^2 \omega_s^2}{r_{st}^2},$$

wo k_s der Trägheitsradius, ω_s die Winkelgeschwindigkeit des Körpers s .

Rotieren beide Massen, so addieren sich

bei kleinem $\frac{a}{r}$ die Wirkungen und es wird die

Anziehungskraft:

$$K = \frac{1}{2} \mu_s \mu_t \frac{k_s^2 \omega_s^2 + k_t^2 \omega_t^2}{r^2}. \quad (2a)$$

Die Form dieses Kraftgesetzes entspricht schon der Newtonschen Gravitation, jedoch ist die Anziehung eines so rotierenden Teilchens nicht gleichmäßig nach allen Richtungen, sondern am größten senkrecht zur Rotationsachse und gleich Null in dieser Achse.

Steht nämlich die Verbindungsline (der Abstand r) der Mittelpunkte zweier Massen unter dem Winkel ψ zur Drehachse eines der Teilchen, so ist die Komponente der Zentripetalbeschleunigung längs dieser Verbindungsline $\frac{v^2}{a} \cos \psi \sin \psi$ und der Abstand dieses Teilchens von dem Mittelpunkt der anderen Masse $r + a \cos \psi \sin \psi$ für kleines $\frac{a}{r}$. Unter dieser Voraussetzung multiplizieren sich die Integrale (6a), (6b) mit $\sin^2 \psi$, und wenn man die An-

ziehungskraft für den Fall, daß die Drehachse mit dem Abstande r den Winkel ψ bildet mit K_ψ bezeichnet, erhält man

$$K_\psi = K \sin^2 \psi.$$

Den Aufbau der gravitierenden Materie möge man sich nun so vorstellen, daß in jedem Volumenelement rotierende Teilchen ohne Bevorzugung einer Rotationsachse verteilt seien.

Dann läßt sich an dem Beispiel von 3 rotierenden Teilchen mit zueinander senkrechten Rotationsachsen einsehen, daß die resultierende Kraft auf eine andere in einer vorgeschriebenen Richtung liegende Masse

$$K_r = \frac{2}{3} \mu_s \mu_t \frac{k_s^2 \omega_s^2 + k_t^2 \omega_t^2}{2r_{st}^2} \quad (2b)$$

betragen muß.

Hierbei sei z. B. unter μ_s die Summe aller Massenkoeffizienten der einzelnen rotierenden Teilchen der betrachteten Masse verstanden. Die betrachtete Masse habe jedoch, trotzdem sie eine vielleicht große Zahl unregelmäßig verteilter rotierender Teilchen enthält, eine gegen die Abstände nach den Teilchen der zweiten Masse des Index t in sehr kleine Ausdehnung, so daß unter r_{st} der Abstand der Schwerpunkte der beiden Massen verstanden werden darf.

Soll sich in (2b) das Newtonsche Anziehungsgesetz ausdrücken, so muß die Beziehung gelten:

$$\gamma \frac{m_s m_t}{r^2} = \frac{1}{3} \frac{\mu_s \mu_t}{r^2} (k_s^2 \omega_s^2 + k_t^2 \omega_t^2),$$

wo γ die Gravitationskonstante.

Also wird nach Gleichung (5):

$$\gamma = 3 \frac{k_s^2 \omega_s^2 + k_t^2 \omega_t^2}{\varphi_s \varphi_t},$$

wo φ_s und φ_t die Potentialfunktionen $\sum \frac{\mu}{r}$ an den Orten der betrachteten Massen bedeuten.

Die Gravitationskonstante γ könnte allerdings nun nur in einem Raum von solcher Ausdehnung eine universelle Konstante sein, wo die in der Masseneinheit enthaltene Rotationsenergie $e = \frac{k^2 \omega^2}{2}$ und die Potentialfunktion φ genügend wenig veränderlich sind. Dann würde sein:

$$\gamma = 12 \frac{e}{\varphi^2}. \quad (7)$$

Andererseits wurde oben in Übereinstimmung mit Herrn Einsteins Theorie der Gravitation gefunden, daß auch der für die Trägheit maßgebende Massenwert abhängig sein muß von der Lage zu allen übrigen Massen, genauer der

Potentialfunktion $\sum \frac{\mu}{r}$. Es war deswegen nur zu erwarten, daß auch die Gravitationskonstante von jenem Werte abhängen würde.

Es ist nun zweckmäßig, wegen des Überganges zur Relativitätstheorie die obigen Ergebnisse auch mit Hilfe der kinetischen Energie T des ganzen Systems darzustellen.

Der ganze Ansatz war ja ausgegangen von der Energiegröße aller Massen des Raumes:

$$T = \frac{1}{2} \sum \sum \mu_s \mu_t \dot{r}_{st}^2 r_{st}^{-1}.$$

Der auf eine Masse μ_t bezügliche Teil, der allein für die auf diese Masse wirkende Kraft in Betracht kommt, ist:

$$T_t = \frac{1}{2} \mu_t \sum \mu_s \dot{r}_{st}^2 r_{st}^{-1}.$$

Die früheren Überlegungen haben gezeigt, daß man zufolge der Art der Massenverteilung diese Energie im wesentlichen in einen Teil, der nur von der Bewegung des betrachteten Punktes, und einen Teil, der von der Bewegung aller übrigen Punkte allein herrührt, zerlegen und setzen kann:

$$T_t = \frac{1}{2} \frac{\mu_t}{3} \sum \frac{\mu_s}{r_{st}} q^2 + \frac{1}{2} \mu_t \sum \mu_s \dot{r}_{st}^0 r_{st}^{-1},$$

wo \dot{r}_{st}^0 die Änderungsgeschwindigkeiten der Abstände von der mit ihrem Schwerpunkt in Ruhe gedachten Masse μ_t bedeuten.

Das erste Glied gibt den klassischen Ausdruck für die kinetische Energie einer mit der Geschwindigkeit q bewegten Masse $m_t = \mu_t \sum \frac{\mu_s}{r}$ wieder, das zweite Glied muß nach den früheren Überlegungen dann die Gravitationsenergie bedeuten, wenn in den \dot{r} nur die Rotationen der Massen μ_s , jedoch nicht ihre Translationen berücksichtigt werden.

Die Auswertung dieses zweiten Gliedes ist in Wirklichkeit schon durch den früher gefundenen Kraftausdruck (2b) geleistet. Dieser bedingt eine Energie vom Betrage

$$\frac{2}{3} \mu_t k^2 \omega^2 \sum \frac{\mu_s}{r},$$

wo die Energiedichte der Rotation aller Elementarteilchen bezogen auf die Masseneinheit als gleich angenommen werden muß. Der vollständige Energieausdruck lautet dann:

$$T_t = \frac{1}{2} \frac{\mu_t}{3} \sum \frac{\mu_s}{r} (q_t^2 + 4 k^2 \omega^2). \quad (1a)$$

Aus diesem Ausdruck ergibt sich nun wiederum sowohl die Trägheitskraft als auch die Schwerkraft in der Form:

$$\text{Trägheitskraft } K_t = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) = \frac{d}{dt} (m \dot{x}), \quad (4a)$$

$$\text{Schwerkraft } K_g = \frac{\partial T}{\partial x} = \frac{2}{3} k^2 \omega^2 \mu_t \frac{\partial}{\partial x} \left(\sum \frac{\mu_s}{r} \right). \quad (4b)$$

Dieser Kraftausdruck würde mit dem Newtonschen vollständig übereinstimmen, wenn überall dieselbe Proportionalität zwischen Massenkoeffizient μ und Masse m bestände. Dies ist aber nur näherungsweise dort der Fall, wo die

Potentialfunktion $\sum \frac{\mu}{r}$ sich genügend allmählich ändert. Setzt man nämlich

$$\mu_t = m_t \frac{3}{\varphi},$$

wo

$$\varphi = \sum \frac{\mu_s}{r},$$

so erhält man:

$$K_g = 6 k^2 \omega^2 \frac{m_t}{\varphi} \frac{\partial}{\partial x} \left(\sum \frac{m_s}{\varphi r} \right) \\ = m_t 6 \frac{k^2 \omega^2}{\varphi} \left[\frac{1}{\varphi} \frac{\partial}{\partial x} \sum \frac{m_s}{r} - \frac{1}{\varphi^2} \sum \frac{m_s}{r} \frac{\partial \varphi}{\partial x} \right].$$

Wird nun $\varphi = \sum \frac{\mu}{r}$ als groß und $\frac{\partial \varphi}{\partial x}$ als klein vorausgesetzt, so ergibt sich in erster Näherung

$$K_g = 6 \frac{k^2 \omega^2}{\left(\sum \frac{\mu}{r} \right)^2} m_t \frac{\partial}{\partial x} \sum \frac{m}{r},$$

also die Gravitationskonstante wie oben:

$$\gamma = 6 \frac{k^2 \omega^2}{\left(\sum \frac{\mu}{r} \right)^2}. \quad (7)$$

Es folgt also auch hier wie in allen neueren Gravitationstheorien eine nur näherungsweise Gültigkeit der Laplace-Poissonschen Potentialgleichung der Gravitation, wobei allerdings diese Näherung als äußerst genaue herauskommen muß.

Im übrigen erfüllen die Kraftformen (4a) und (4b) die Bedingung, daß in allen Punkten des Gravitationsfeldes alle Massen dieselbe Beschleunigung erfahren (gleich schnell fallen), sobald die Rotationsenergie der Masseneinheit nicht von der stofflichen Natur, sondern nur von dem Orte abhängt.

Die Einordnung der bis hierher erzielten Ergebnisse in eine Feldtheorie, welche auch die zeitlichen Änderungen umfaßt und dem Relativitätspostulat genügt, ist erwünscht.

Nun ist nach Anmerkung auf S. 181 jedenfalls sicher, daß dieser Anschluß nicht an die Nordströmsche Skalartheorie der Gravitation erfolgen kann, da dort die träge Masse bei Annäherung anderer Massen abnimmt, während sie bei unserem Ansatz ähnlich wie in der Einsteinschen Theorie wächst. Es scheint auch der Charakter des obigen Ansatzes mehr auf eine Tensortheorie hinzudeuten.

Jedoch ist mir ein völliger Anschluß an das verallgemeinerte Relativitätsschema von Einstein-Großmann bisher nicht gelungen. Daß dies schwierig ist, scheint mir folgenden Grund zu haben.

Die vollständigen Differentialgleichungen des Gravitationsfeldes und der vollständige kovariante Spannungsenergieterensor der Massenströmung in Einsteins letzten Veröffentlichungen, welche zusammen die Verallgemeinerung der Laplace-Poissonschen Potentialgleichung bilden, stellen ein mathematisch sehr schwieriges Problem dar. Einstein selbst gewinnt allerdings aus ihnen trotzdem schon wertvolle Ergebnisse, indem er das Linienelement der bisherigen Relativitätstheorie als erste Näherung ansetzt und aus dem Energietensor dieser ersten Näherung vermittelst der nun linear werdenden Differentialgleichungen des Feldes eine klein vorausgesetzte Korrektur findet.

Durch dieses Verfahren verzichtet er bewußter Weise auf einen Einblick in den mechanischen Aufbau der Ausgangswerte des Linienelements, die er als gegeben annimmt, trotzdem sie aus den Differentialgleichungen folgen müßten. Grade diese physikalische Vorstellung liefern aber, wenn auch nur für das Gleichgewicht des Feldes die hier gegebenen Ansätze, die also vielleicht erst nach einer anderen Integrationsmethode der allgemeinen Einsteinschen Feldgleichungen sich in diese einordnen lassen. Ich glaube an einen solchen Anschluß deswegen, weil meine Ergebnisse in bezug auf die Abhängigkeit zwischen Trägheit, Potentialfunktion und Lichtgeschwindigkeit ganz ähnlich gebaut sind, wie die Einsteinschen und das Einsteinsche Schema von sehr großer Reichweite sein muß.

Immerhin möchte ich in Folgendem einen skalaren Ansatz einer Feldtheorie mitteilen, der in genügend kleinen Gebieten der früheren Relativitätstheorie gehorcht und die obigen Ergebnisse als erste Näherungen enthält. Ich setze das Linienelement

$$ds = dt \left[c_0^2 - \frac{\varphi}{\varphi_0} (4 k^2 \omega^2 + q^2) \right]^{\frac{1}{2}},$$

wo c_0 eine übrigens sehr große Konstante ist, q die Geschwindigkeit des betrachteten Punktes

bedeutet und φ der vierdimensionalen Potentialgleichung

$$\square \varphi = -4\pi\varrho$$

gehorcht, wobei φ_0 der Wert von φ am Koordinatenanfangspunkt, ϱ sei hierbei die Ruhmassen-dichte von μ und $k^2\omega^2$ ist wieder als Konstante zu behandeln.

Die Lagrangesche Funktion habe den Wert:

$$H = -\mu \frac{\varphi_0}{3} c_0 \frac{ds}{dt} = m_0 c_0 \frac{ds}{dt}.$$

Es wird dann die Trägheitskraft:

$$K_x = \frac{d}{dt} \left(\frac{\partial H}{\partial \dot{x}} \right) = \mu \frac{d}{dt} \left[m \dot{x} \left(1 - \frac{\varphi}{\varphi_0} \left\{ 4 k^2 \omega^2 + q^2 \right\} \right)^{-\frac{1}{2}} \right],$$

Die Gravitationskraft nimmt den Wert an:

$$K_g = \frac{\partial H}{\partial x} = \frac{\mu}{3} \frac{\partial \varphi}{\partial x} \left(2 k^2 \omega^2 + \frac{q^2}{2} \right) \left(1 - \frac{\varphi}{\varphi_0} \left\{ 4 k^2 \omega^2 + q^2 \right\} \right)^{-\frac{1}{2}}.$$

Die früheren Kräfte der Gl. (4a) und (4b) stellen offenbar die erste Näherung dieser letzteren Kraftausdrücke dar, welche eine Erweiterung des Newtonschen Kraftgesetzes für den Fall endlicher Geschwindigkeit bedeuten.

Nimmt man ferner, wie in der Relativitätstheorie an, daß das Linienelement $ds = 0$ eine Geschwindigkeit q gleich der Lichtgeschwindigkeit ergibt, so wird diese

$$c = \sqrt{c_0^2 \frac{\varphi_0}{\varphi} - 4 k^2 \omega^2}.$$

Sie nimmt also bei Annäherung an Massen ab. c_0 ist die Lichtgeschwindigkeit am Anfangspunkte, wenn keine Massenrotation bestände.

Auch die Energie eines Massenpunktes ergibt sich als Verallgemeinerung des früheren Energieausdruckes (1a) durch den üblichen Ansatz:

$$E = \frac{\partial H}{\partial \dot{x}} \dot{x} + \frac{\partial H}{\partial \dot{y}} \dot{y} + \frac{\partial H}{\partial \dot{z}} \dot{z} - H \\ = mc^2 \left(1 - \frac{\varphi}{\varphi_0} (q^2 + 4 k^2 \omega^2) \right)^{-\frac{1}{2}}$$

Auch der Energiewert vermindert sich also bei Annäherung an andere Massen.

Die obigen aus dem vierdimensionalen Linienelement abgeleiteten Ausdrücke gehen im Anfangspunkt des Koordinatensystems und bei Ab-

wesenheit von Massenrotation in die bekannten Ausdrücke der Einstein-Minkowskischen Relativitätstheorie über.

Die bei der Rotation von Massen unter Voraussetzung der Relativität der Trägheit entstehenden, gravitationsartigen Kräfte führen sich darauf zurück, daß bei jeder Rotation die Anziehung erzeugenden Zentripetalbeschleunigungen näher zu allen anderen Massen liegen als die Abstoßung erzeugenden. Die oft gestellte Frage nach der Möglichkeit negativer Massen verneint sich damit ganz von selbst.

Diese Wirkungsweise der Rotation ist nun aber auch anderen Bewegungsformen eigen, wenn man statt der Kräfte und Beschleunigungen ihre zeitlichen Mittelwerte zuläßt. Jede Ansammlung von sich irgendwie durcheinander bewegenden Massenteilchen muß eine gravitationsartige Anziehung auf andere Massen ausüben, sofern die oben angesetzte Relativität der Trägheit richtig ist. Für die Ausrechnung würde es auf die zeitlichen und räumlichen Mittelwerte von $\mu r^2 r^{-1}$ ankommen und die mittlere Wirkung würde der einer Rotation von gewissem Betrage äquivalent sein.

Schließlich kann man nun noch die Frage aufwerfen, ob nicht die allgemeine Rotation aller Massenteilchen vom Standpunkt der Relativität der Trägheit ebenfalls gedeutet werden kann. In der Tat muß auch jedes Drehmoment der Trägheitskräfte durch entsprechende Drehmomente an allen anderen Massen aufgenommen werden, also müssen auch jeder Änderung einer Winkelbewegungsgröße alle anderen Winkelbewegungsgrößen folgen. Es muß dadurch also ein gewisser Ausgleich der Rotationen aller Massen vor sich gehen.

Zusammenfassung.

Ein früherer Ansatz für die beschleunigungsrelative Form der kinetischen Energie von Massen wird dergestalt vereinfacht, daß die Gravitationswirkung ohne Hinzuziehung einer potentiellen Energie als reine Trägheitswirkung erscheint.

Hierzu ist allerdings die Hypothese notwendig, daß alle ein Gravitationsfeld erregenden Massen Rotation besitzen und die Rotationsachsen unregelmäßig gerichtet und verteilt sind. Die Gravitationskraft wird dann als gegenseitige Zentripetalkraft dargestellt.

Die träge Masse wird bei diesem Ansatz nur näherungsweise als Skalar gefunden, und zwar dann, wenn man eine genügende Symmetrie der Massenverteilung des Weltraums annimmt.

Sowohl träge als auch anziehende Masse sind in ihrer Größe in gleicher ganz bestimmter

Weise von der Verteilung aller übrigen Massen abhängig.

Während der erste Ansatz eines Elementar- gesetzes zweier Massen einer Tensortheorie der Trägheit und Gravitation zu entsprechen scheint, wird unter Voraussetzung einer gewissen Symmetrie der Massenverteilung und Massenrotation unseres Raumes eine Skalartheorie der Gravitation aufgestellt und es werden die wesentlichen, vorher als Fernwirkungen aufgefaßten Ergebnisse mit Hilfe einer Lagrangeschen Funktion des Feldes wiedergefunden. Es folgt aus ihr eine Vergrößerung der tragen Masse und eine Verminderung der Lichtgeschwindigkeit und der Energie bei Annäherung von Massen.

(Eingegangen 1. April 1914.)

Über Löschvorgänge in Funkenstrecken.

(Mitteilung aus dem Institut für angewandte Elektrizität der Universität Göttingen.)

Von H. Masing und H. Wiesinger.

Einleitung.

Die grundlegenden Versuche von H. Th. Simon¹⁾ über den Wechselstromlichtbogen haben wohl zuerst die Auffassung mit Entschiedenheit zur Geltung gebracht, daß eine einzelne Funkenentladung als ein Wechselstromlichtbogen hoher Frequenz aufzufassen ist. Durch diesen Wechselstromlichtbogen hindurch schwingt die in dem Entladungskreise befindliche Energie gedämpft aus. Entsprechend hat die dynamische Charakteristik beim Funken und Wechselstromlichtbogen im wesentlichen die gleichen Eigenschaften, was von Roschansky²⁾ experimentell bestätigt wurde. Für unsere Arbeit ist von entscheidender Bedeutung das von H. Th. Simon erhaltene und später von seinen Schülern mehrfach bestätigte Resultat, daß mit abnehmender Stromamplitude der dynamische Zündgipfel der Charakteristik zu höheren Spannungswerten hinauf wächst, und zwar um so mehr, je geringer die Lichtbogenhysteresis ist (s. Fig. 1). Wir wollen die zu diesem Gipfel gehörige Spannung „dynamische Zündspannung“ nennen.

Bei genügend klein werdender Stromamplitude wächst die dynamische Zündspannung so in die Höhe, daß schließlich die zur Verfügung stehende Elektrodenspannung die Zündspitze

1) H. Th. Simon, diese Zeitschr. 6, 297, 1905.

2) D. Roschansky, diese Zeitschr. 9, 627, 1908.